Skip to main content
Log in

Phase separation and electrical conductivity of nanocomposites made of ether-/ester-based polyurethane blends and carbon nanotubes

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Nanocomposites made of blends of ether-based thermoplastic polyurethanes (TPUs) and ester-based TPUs with multi-walled carbon nanotubes (MWCNTs) were studied. The TPU blend/MWCNT nanocomposites had higher electrical conductivities than those containing a single TPU. At a specific MWCNT loading, quenched or annealed TPU blend nanocomposites exhibited electrical conductivities three to four orders of magnitude larger than single TPU samples. Using Lorentz corrections, invariant quantity, Q inv , in small-angle X-ray scattering (SAXS) analysis, MWCNTs were found to retard phase separation. Raman spectra indicated the existence of interactions between phenyl rings in the TPUs and the MWCNT. Good dispersion of MWCNTs in the TPU blend was observed with transmission electron microscopy (TEM); both isolated droplet and co-continuous phase-separated morphologies were shown. Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC) measurements were performed to investigate the changes in morphology. Dynamic mechanical analysis (DMA) results were consistent with the DSC results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Unsal, B. Yalcin, I. Yilgor, E. Yilgor, and M. Cakmak, Polymer, 50, 19 (2009).

    Article  Google Scholar 

  2. T. Thomson, Polyurethanes as Specialty Chemicals, CRC Press, Boca Raton, 2005.

    Google Scholar 

  3. N. M. K. Lamba, K. A. Woodhouse, and S. L. Cooper, Polyurethanes in Biomedical Applications, CRC Press, Boca Raton, 1998.

    Google Scholar 

  4. I. M. Pereira and R. L. Oréfice, Macromol. Symp., 299/300, 1 (2011).

    Article  CAS  Google Scholar 

  5. B. Fernández-d’Arlas, U. Khan, L. Rueda, J. N. Coleman, I. Mondragon, M. A. Corcuera, and A. Eceiza, Compos. Sci. Technol., 71, 8 (2011).

    Google Scholar 

  6. E. Princi, S. Vicini, P. Stagnaro, and L. Conzatti, Micron, 42, 1 (2011).

    Article  Google Scholar 

  7. C. H. Dan, M. H. Lee, Y. D. Kim, B. H. Min, and J. H. Kim, Polymer, 47, 19 (2006).

    Article  Google Scholar 

  8. M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, Carbon, 49, 3430 (2011).

    Article  CAS  Google Scholar 

  9. M. Arjmand, M. Mahmoodi, S. Park, and U. Sundararaj, J. Cell. Plast., 50, 551 (2014).

    Article  CAS  Google Scholar 

  10. M. H. Al-Saleh and U. Sundararaj, Macromol. Mater. Eng., 293, 621 (2008).

    Article  CAS  Google Scholar 

  11. M. Arjmand, K. Chizari, B. Krause, P. Potschke, and U. Sundararaj, Carbon, 98, 358 (2016).

    Article  CAS  Google Scholar 

  12. M. Arjmand and U. Sundararaj, Compos. Sci. Technol., 118, 257 (2015).

    Article  CAS  Google Scholar 

  13. M. Arjmand, A. Ameli, and U. Sundararaj, Macromol. Mater. Eng., 301, 555 (2016).

    Article  CAS  Google Scholar 

  14. E. Segal, R. Tchoudakov, M. Narkis, and A. Siegmann, J. Polym. Sci., Part B: Polym. Phys., 41, 1428 (2003).

    Article  CAS  Google Scholar 

  15. C. Zang, X. S. Yui, S. Asai, and M. Sumita, Mater. Lett., 36, 186 (1998).

    Article  Google Scholar 

  16. Y. Konishi and M. Cakmak, Polymer, 47, 5371 (2006).

    Article  CAS  Google Scholar 

  17. J. Hong, D. W. Park, and S. E. Shim, Macromol. Res., 20, 465 (2012).

    Article  CAS  Google Scholar 

  18. B. D. Che, L. T. Nguyen, B. Q. Nguyen, H. T. Nguyen, T. Le, and N. H. Nguyen, Macromol. Res., 22, 1121 (2014).

    Article  Google Scholar 

  19. H. Koerner, W. Liu, M. Alexander, P. Mirau, H. Dowty, and R. A. Vaia, Polymer, 46, 4405 (2005).

    Article  CAS  Google Scholar 

  20. J. Xiong, Z. Zheng, Xiumin Qin, M. Li, H. Li, and X. Wang, Carbon, 44, 2701 (2006).

    Article  CAS  Google Scholar 

  21. H.-C. Kuan, C.-C. M. Ma, W.-P. Chang, S.-M. Yuen, H.-H. Wu, and T.-M. Lee, Compos. Sci. Technol., 65, 1703 (2005).

    Article  CAS  Google Scholar 

  22. I.-H. Kim, D. H. Baik, and Y. G. Jeong, Macromol. Res., 20, 920 (2012).

    Article  CAS  Google Scholar 

  23. B. S. Kim, S. H. Bae, Y.-H. Park, and J.-H. Kim, Macromol. Res., 15, 357 (2007).

    Article  CAS  Google Scholar 

  24. R. E. Gorga and R. E. Cohen, J. Polym. Sci., Part B: Polym. Phys., 42, 14 (2004).

    Article  Google Scholar 

  25. P. Zhao, K. Wang, H. Yang, Q. Zhang, R. Du, and Q. Fu, Polymer, 48, 19 (2007).

    Article  Google Scholar 

  26. W. E. Dondero and R. E. Gorga, J. Polym. Sci., Part B: Polym. Phys., 44, 5 (2006).

    Article  Google Scholar 

  27. H. Ha, S. C. Kim, and K. Ha, Macromol. Res., 18, 660 (2010).

    Article  CAS  Google Scholar 

  28. S. Kim, J. W. Lee, I.-K. Hong, and S. Lee, Macromol. Res., 22, 154 (2014).

    Article  CAS  Google Scholar 

  29. G. Salimbeygi, K. Nasouri, A. M. Shoushtari, R. Malek, and F. Mazaheri, Macromol. Res., 23, 741 (2015).

    Article  CAS  Google Scholar 

  30. P. Potschke, A. R. Bhattacharyya, and A. Janke, Carbon, 42, 965 (2004).

    Article  CAS  Google Scholar 

  31. P. Potschke, A. R. Bhattacharyya, and A. Janke, Polymer, 44, 8061 (2003).

    Article  CAS  Google Scholar 

  32. M. Wu and L. L. Shaw, J. Power Sources, 136, 37 (2004).

    Article  CAS  Google Scholar 

  33. R. A. Khare, A. R. Bhattacharyya, A. R. Kulkarni, M. Saroop, and A. Biswas, J. Polym. Sci., Part B: Polym. Phys., 46, 2286 (2008).

    Article  CAS  Google Scholar 

  34. M. Weber and M. R. Kamal, Polym. Compos., 18, 711 (1997).

    Article  CAS  Google Scholar 

  35. S. Abbasi, P. J. Carreau, and A. Derdouri, Polymer, 51, 922 (2010).

    Article  CAS  Google Scholar 

  36. F. Jiang, G. Hu, S. Wu, Y. Wei, and L. Zhang, Polym. Polym. Compos., 16, 8 (2008).

    Google Scholar 

  37. A. K. Barick and K. K. Tripathy, Mater. Sci. Eng. B, 176, 18 (2011).

    Article  Google Scholar 

  38. M. F. Sonnenschein, Z. Lysenko, D. A. Brune, B. L. Wendt, and A. K. Schrock, Polymer, 46, 23 (2005).

    Article  Google Scholar 

  39. H. D. Bao, Z. X. Guo, and J. Yu, J. Polymer., 49, 17 (2008).

    Article  Google Scholar 

  40. E. P. Favvas and A. C. Mitropoulos, J. Eng. Sci. Technol. Rev., 1, (2008).

    Google Scholar 

  41. W. T. Chuang, U. S. Jeng, and H. S. Sheu, Macromol Res., 14, 1 (2006).

    Article  Google Scholar 

  42. M. Lee, H. Jeon, B. H. Min, and J. H. Kim, J. Appl. Polym. Sci., 121, 2 (2011).

    Google Scholar 

  43. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza, and R. Saito, Carbon, 40, 2043 (2002).

    Article  CAS  Google Scholar 

  44. F. Villalpando-Paez, A. Zamudio, A. L. Elias, H. Son, E. B. Barros, and S. G. Chou, Chem. Phys. Lett., 424, 345 (2006).

    Article  CAS  Google Scholar 

  45. S. Parnell, K. Min, and M. Cakmak, Polymer, 44, 18 (2003).

    Article  Google Scholar 

  46. H. K. F. Cheng, T. Basu, N. G. Sahoo, L. Li, and S. H. Chan, Polymers, 4, 2 (2012).

    Google Scholar 

  47. H. Frielinghaus, N. Hermsdorf, R. Sigel, K. Almdal, K. Mortensen, I. W. Hamley, L. Messé, L. Corvazier, A. J. Ryan, D. V. Dusschoten, M. Wilhelm, G. Floudas, and G. Fytas, Macromolecules, 34, 14 (2001).

    Article  Google Scholar 

  48. Z. M. Li, S. N. Li, X. B. Xu, and A. Lu, Polym. Plast. Technol. Eng., 46, 2 (2007).

    Google Scholar 

  49. C. Zhang, J. Hu, S. Chen, and F. Ji, J. Mol. Model., 16, 8 (2010).

    CAS  Google Scholar 

  50. J. G. Dillon and M. K. Hughes, Biomaterials, 13, 4 (1992).

    Article  Google Scholar 

  51. S. B. Lin, K. S. Hwang, S. Y. Tsay, and S. L. Cooper, Colloid Polym. Sci., 263, 2 (1985).

    Article  Google Scholar 

  52. A. Frick and A. Rochman, Polym. Test., 23, 4 (2004).

    Article  Google Scholar 

  53. D. Bikiaris, Materials, 3, 2884 (2010).

    Article  CAS  Google Scholar 

  54. N. Shukla and A. K. Thakur, Ionics, 15, 357 (2009).

    Article  CAS  Google Scholar 

  55. A. Huegun, M. Fernandez, J. Pena, M. E. Munoz, and A. Santamaria, Nanomaterials, 3, 173 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ho Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Koo, J., Ki, H. et al. Phase separation and electrical conductivity of nanocomposites made of ether-/ester-based polyurethane blends and carbon nanotubes. Macromol. Res. 25, 231–242 (2017). https://doi.org/10.1007/s13233-017-5032-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5032-x

Keywords

Navigation