Skip to main content
Log in

The influence of molecular weight on high shear rate macroscopic rheological properties of polybutene-1 melts through rubber-processing analyzer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The rheological properties of polybutene-1 with different molecular weight (M w) and polydispersity index (PDI) were studied by means of rubber-processing analyzer (RPA). The studies included strain sweeps, frequency sweeps, temperature sweeps, and stress relaxation tests after a sudden shear displacement. It is observed that the linear viscoelastic regions are basically identical for all the samples with different molecular structure and become smaller slightly with increasing frequency. The melts with larger M w and/or PDI present higher viscoelasticity moduli, melts viscosity, relaxation modulus, and better temperature stability, but lower loss factor and critical shear rate. Furthermore, it is found that crossover frequency decreases with increasing M w and crossover modulus increases with decreasing PDI. In addition, stress relaxation followed by substantial stress growth is observed for the PB-1 melt with larger M w in the stress relaxation measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang XB, He AH (2014) Stereospecific polymerization of olefins with supported Ziegler-Natta catalysts. Polym Int 63(2):179–183

    Article  CAS  Google Scholar 

  2. Natta G (1955) Une nouvelle classe de polymeres d’α-olefines ayant une régularité de structure exceptionnelle. J Polym Sci 16(82):143–154

    Article  CAS  Google Scholar 

  3. Lee MS, Chen SA (1996) The polymer–polymer interaction parameter in polybutene-1/polypropylene blends. J Polym Res 3(4):235–238

    Article  CAS  Google Scholar 

  4. Azzurri F, Flores A, Alfonso GC, Balta Calleja FJ (2002) Polymorphism of isotactic poly(1-butene) as revealed by microindentation hardness. 1. Kinetics of the transformation. Macromolecules 35(24):9069–9073

    Article  CAS  Google Scholar 

  5. Foglia AJ (1969) Polybutylene, its chemistry, properties and applications. Appl Polym Symp 11:1–18

    CAS  Google Scholar 

  6. Takashi Y, Masahiko K, Hideki I (1988) Catalysts for vapor-phase polymerization of 1-butene. European Patent Applications, EP 294767 A1

  7. Lucaini L, Seppälä J, Lofgren B (1988) Poly-1-buene: its preparation, properties and challenges. Prog Polym Sci 13(1):37–62

    Article  Google Scholar 

  8. Huang BC, Zheng BY, Yao W, Ma SY, Shao HF, Cui YY (2007) Synthesis of high isotactic polybutene-1 through bulk polymerization. Chinese Patent, CN101020728A

  9. Marega C, Marigo A (2002) A structural study of poly(propylene-ran-1-butene) copolymers and propylene-ethylene-1-butene terpolymers by wide angle X ray scattering and thermal analysis. Mater Eng (Modena, Italy) 13(3):337–346

    CAS  Google Scholar 

  10. Montagova K, Benicek L, Cermak R, Chvatalova L (2010) Evolution of physical and mechanical properties during phase transformation in poly(1-butene). Latest trends on engineering mechanics, structures, engineering geology, 3rd WSEAS international conference on engineering mechanics, structures, engineering geology (EMESEG’10) and international conference on geography and geology (WORLDGEO’10), 266–270

  11. Rakus JP, Mason CD, Schaffhauser RJ (1969) Stress-strain properties of poly(1-butene). J Polym Sci Polym Lett Ed 7(8):591–595

    Article  CAS  Google Scholar 

  12. Karlsson K, Eriksson PA, Hedenqvist M (1993) Molecular structure, morphology, and antioxidant-consumption in polybutene-1 pipes in hot-water applications. Polym Eng Sci 33(5):303–310

    Article  CAS  Google Scholar 

  13. Tokui S, Komiya (2002) Polybutene resin with wide molecular weight distribution, and pipe material and a pipe wherewith. European Patent Applications. EP 1219645 A1

  14. Kalay G, Kalay CR (2003) Structure and physical property relationships in processed polybutene-1. J Appl Polym Sci 88(3):814–824

    Article  CAS  Google Scholar 

  15. Shao HF, Jiang DX, Zhang MM, Yao W, Huang BC (2012) Characterization of the polymorphic transformation of poly (1-butene) based on FTIR and mechanical properties. J Polym Res 19:9919

    Article  Google Scholar 

  16. Shao HF, Yao W, Huang BC, Zhao YX (2009) Effect of crystallinity and spherulite structure on the mechanical properties of poly(1-butene). J Polym Eng 29(6):341–354

    Article  CAS  Google Scholar 

  17. He AH, Xu CS, Shao HF, Yao W, Huang BC (2010) Effect of molecular weight on the polymorphic transformation of isotactic poly(1-butene). Polym Degrad Stab 95(9):1443–1448

    Article  CAS  Google Scholar 

  18. Sun BY, Cui L, Jiang XB, Jiang BY, Yao W, He AH (2014) Influence of catalyst residues on thermo-oxidative aging and thermal stability of poly(butene-1). Chin J Polym Sci 32(5):633–639

    Article  CAS  Google Scholar 

  19. He AH, Zheng WP, Shi YW, Liu GQ, Yao W, Huang BC (2012) In situ synthesis of polybutene-1/polypropylene spherical alloys within a reactor with an MgCl2-supported Ziegler-Natta catalyst. Polym Int 61(10):1575–1581

    Article  CAS  Google Scholar 

  20. Bove L, Nobile MR (2002) Shear flow effects on polymer melts crystallization: kinetics features. Macromol Symp 180(1):169–180

    Article  CAS  Google Scholar 

  21. Acierno S, Grizzuti N, Winter HH (2002) Effects of molecular weight on the isothermal crystallization of poly(1-butene). Macromolecules 35(13):5043–5048

    Article  CAS  Google Scholar 

  22. Férec J, Heuzey MC, Ausias G, Carreau PJ (2008) Rheological behavior of fiber-filled polymers under large amplitude oscillatory shear flow. J Non-Newton Fluid Mech 151(1–3):89–100

    Article  Google Scholar 

  23. Hideki Y, James LW (1982) Influence of thermal degradation on the rheological behavior of polypropylene and poly-1-butene. Polym Eng Rev 2(2):167–188

    Google Scholar 

  24. Wang JS, Knox JR, Porter RS (1978) Steady-state and dynamic rheology of poly(1-olefin) melts. J Polym Sci Polym Phys Ed 16(10):1709–1719

    Article  CAS  Google Scholar 

  25. Combs RL, Slonaker DF, Coover HW (1969) Effects of molecular weight distribution and branching on rheological properties of polyolefin melts. J Appl Polym Sci 13(3):519–534

    Article  CAS  Google Scholar 

  26. Xu JT, Xu XR, Zheng Q, Feng LX, Chen W (2002) Dynamic rheological behaviors of metallocene-based ethylene-butene copolymers and their blends with low-density polyenthylene. Eur Polym J 38(2):365–375

    Article  CAS  Google Scholar 

  27. Isayev AI, Fan XY (1994) Steady and oscillatory flows of silicon-polypropylene ceramic compounds. J Mater Sci 29(11):2931–2938

    Article  CAS  Google Scholar 

  28. Shen HW, Luan T, Xie BH, Yang W, Yang MB (2011) Rheological behaviors and molecular weight distribution characteristics of bimodal high-density polyethylene. J Appl Polym Sci 121(3):1543–1549

    Article  CAS  Google Scholar 

  29. Zeichner GR, Macosko CW (1982) On-line viscoelastic measurements for polymer melt processes. Macromol Symp: 861

  30. Utracki LA, Schlund B (1987) Linear low density polyethylenes and their blends. Part 2. Shear flow of LLDPE’s. Polym Eng Sci 27(5):367–379

    Article  CAS  Google Scholar 

  31. Vega JF, Munoz-Escalona A, Santamaria A, Munoz ME, Lafuente P (1996) Comparison of the rheological properties of metallocene-catalyzed and conventional high-density polyethylenes. Macromolecules 29(3):960–965

    Article  CAS  Google Scholar 

  32. Bafna SS (1997) Is the cross-over modulus a reliable measure of polymeric polydispersity? J Appl Polym Sci 63(1):111–113

    Article  CAS  Google Scholar 

  33. Zhai YM, Yang W, Wang Y, Xie BH, Yang MB (2010) Effects of molecular structure of LLDPE on the dynamic rheological behaviors. Gaofenzi Cailiao Kexue Yu Gongcheng 26(1):88–91

    CAS  Google Scholar 

  34. Tzoganakis C (1994) A rheological evaluation of linear and branched controlled-rheology polypropylenes. Can J Chem Eng 72(4):749–754

    Article  CAS  Google Scholar 

  35. Han CD (1976) Rheology in polymer processing. Academic Press, New York, pp 89–109

    Google Scholar 

  36. Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. VNR, New York (Chaps 8–11)

    Book  Google Scholar 

  37. Kim YS, Chung CI, Lai SY, Butler T I, Hyun KS (1996) Melting behavior of different types of low density polyethylenes and screw design considerations. Annual Technical Conference—Society of Plastics Engineers, 54(1): 216–221

  38. Shao HF, Yu QH, Xiao P, Yao W, Huang BC (2012) Study on viscoelastic properties of expoxidized trans-1, 4-polyisoprene by rubber process analyzer. Polym Sci Serious A 54(9):760–766

    Article  CAS  Google Scholar 

  39. Glushkov IA, Vinogradov GV, Rozhkov VA (1974) Flow of elastic viscoplastic thixotropic polymer systems. Mekhanika Polimerov 5:902–908

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Foundation of Taishan Mountain Scholar Constructive Program, the National Natural Science Foundation of China (No. 21174074), Shandong Provincical Key R & D program (2015GGX102019), Shandong Provincial Natural Science Fund for Distinguished Young Scholars (No. JQ201213), and the Nature Science Foundation of Shandong Province (No. ZR2013BM004). We specially thank the support from the Yellow River Delta Scholar program [Office of National University Science & Technology Park Administrative Committee (China University of Petroleum)].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huafeng Shao or Aihua He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, H., Wang, S. & He, A. The influence of molecular weight on high shear rate macroscopic rheological properties of polybutene-1 melts through rubber-processing analyzer. Polym. Bull. 73, 3209–3220 (2016). https://doi.org/10.1007/s00289-016-1650-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1650-2

Keywords

Navigation