Skip to main content
Log in

Electrochemical immunosensor using single-walled carbon nanotubes/chitosan for ultrasensitive detection of deoxynivalenol in food samples

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical immunosensor for highly sensitive detection of deoxynivalenol (DON) in food samples was successfully developed based on single-walled carbon nanotubes/chitosan. The principle was based on the indirect competition between anti-DON, free DON and DON–bovine serum albumin on a glassy carbon electrode modified by the functionalized nanotube/chitosan films. Anti-rabbit immunoglobulin G secondary antibody labelled with alkaline phosphatase was used to react with primary antibody. Differential pulse voltammetry signal could be generated from the hydrolysis of substrate α-naphthyl phosphate catalysed by alkaline phosphatase. The electrochemical signal was linear with the logarithm of DON concentrations, ranging from 0.01 to 1000 ng mL−1 with a detection limit of 5 pg mL−1 under optimal conditions. In addition, the designed strategy was successfully applied to assay DON in different kinds of food samples, showing satisfactory recovery and consistency with high-performance liquid chromatography.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Audenaert K, Vanheule A, Hofte M, Haesaert G (2014) Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins 6(1):1–19. doi:10.3390/toxins6010001

    Article  Google Scholar 

  2. Sunday CE, Masikini M, Wilson L, Rassie C, Waryo T, Baker PG, Iwuoha EI (2015) Application on gold nanoparticles-dotted 4-nitrophenylazo graphene in a label-free impedimetric deoxynivalenol immunosensor. Sensors 15(2):3854–3871. doi:10.3390/s150203854

    Article  CAS  Google Scholar 

  3. Mishra S, Dwivedi PD, Pandey HP, Das M (2014) Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol 72:20–29. doi:10.1016/j.fct.2014.06.027

    Article  CAS  Google Scholar 

  4. Pestka JJ, Smolinski AT (2005) Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B 8(1):39–69. doi:10.1080/10937400590889458

    Article  CAS  Google Scholar 

  5. Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R (2010) Deoxynivalenol and its toxicity. Ind Toxicol 3(3):94–99. doi:10.2478/v10102-010-0019-x

    CAS  Google Scholar 

  6. Diamond M, Reape TJ, Rocha O, Doyle SM, Kacprzyk J, Doohan FM, McCabe PF (2013) The fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PLoS One 8(7):e69542. doi:10.1371/journal.pone.0069542

    Article  CAS  Google Scholar 

  7. Maragos C, Busman M, Sugita-Konishi Y (2006) Production and characterization of a monoclonal antibody that cross-reacts with the mycotoxins nivalenol and 4-deoxynivalenol. Food Addit Contam 23(8):816–825. doi:10.1080/02652030600699072

    Article  CAS  Google Scholar 

  8. Kolosova AY, Sibanda L, Dumoulin F, Lewis J, Duveiller E, Van Peteghem C, De Saeger S (2008) Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. Anal Chim Acta 616(2):235–244. doi:10.1016/j.aca.2008.04.029

    Article  CAS  Google Scholar 

  9. Hickert S, Gerding J, Ncube E, Hubner F, Flett B, Cramer B, Humpf HU (2015) A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotoxin Res 31(2):109–115. doi:10.1007/s12550-015-0221-y

    Article  CAS  Google Scholar 

  10. McElhinney C, O’Kiely P, Elliott C, Danaher M (2015) Development and validation of an UHPLC-MS/MS method for the determination of mycotoxins in grass silages. Food Addit Contam A 32(12):2101–2112. doi:10.1080/19440049.2015.1094830

    CAS  Google Scholar 

  11. Shar ZH, Sumbal GA, Sherazi ST, Bhanger MI, Nizamani SM (2014) Natural co-occurrence of aflatoxins and deoxynivalenol in poultry feed in Pakistan. Food Addit Contam B 7(3):162–167. doi:10.1080/19393210.2013.867904

    Article  CAS  Google Scholar 

  12. Cunha SC, Fernandes JO (2012) Development and validation of a gas chromatography-mass spectrometry method for determination of deoxynivalenol and its metabolites in human urine. Food Chem Toxicol 50(3–4):1019–1026. doi:10.1016/j.fct.2011.12.028

    Article  CAS  Google Scholar 

  13. Vujanovic V, Ben Mansour M (2011) Chemotaxonomic diagnostics: combining sucrose-water agar with TLC to discriminate fusarium graminearum 3-acetyl-DON and 15-acetyl-DON chemotypes. Mycotoxin Res 27(4):295–301. doi:10.1007/s12550-011-0107-6

    Article  CAS  Google Scholar 

  14. Stroka J, Anklam E (2000) Development of a simplified densitometer for the determination of aflatoxins by thin-layer chromatography. J Chromatogr A 904(2):263–268

    Article  CAS  Google Scholar 

  15. Lupo A, Roebuck C, Settimo K, Quain A, Kennedy J, Abouzied M (2010) Validation study of a rapid ELISA for detection of deoxynivalenol in wheat, barley, malted barley, corn, oats, and rice. Performance Tested Method 090901. J AOAC Int 93(2):600–610

    CAS  Google Scholar 

  16. Chu XF, Dou XW, Kong WJ, Yang MH, Zhao C, Zhao M, Ouyang Z (2015) Contamination level of aflatoxin B1 in lotus seeds rapid screening by indirect competitive ELISA method. J Chin Mater Med 40(4):704–709

    CAS  Google Scholar 

  17. Tan Y, Wei X, Zhang Y, Wang P, Qiu B, Guo L, Lin Z, Yang HH (2015) Exonuclease-catalyzed target recycling amplification and immobilization-free electrochemical aptasensor. Anal Chem 87(23):11826–11831. doi:10.1021/acs.analchem.5b03314

    Article  CAS  Google Scholar 

  18. Yu L, Zhang Y, Hu C, Wu H, Yang Y, Huang C, Jia N (2015) Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB1 in olive oil. Food Chem 176:22–26. doi:10.1016/j.foodchem.2014.12.030

    Article  CAS  Google Scholar 

  19. Zhilei W, Xiulan S, Zaijun L, Yinjun F, Guoxiao R, Yaru H, Junkang L (2011) Highly sensitive deoxynivalenol immunosensor based on a glassy carbon electrode modified with a fullerene/ferrocene/ionic liquid composite. Microchim Acta 172(3):365–371. doi:10.1007/s00604-010-0495-x

    Article  Google Scholar 

  20. Romanazzo D, Ricci F, Volpe G, Elliott CT, Vesco S, Kroeger K, Moscone D, Stroka J, Van Egmond H, Vehniainen M, Palleschi G (2010) Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens Bioelectron 25(12):2615–2621. doi:10.1016/j.bios.2010.04.029

    Article  CAS  Google Scholar 

  21. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38(8):2214–2230. doi:10.1039/b518111a

    Article  CAS  Google Scholar 

  22. Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250. doi:10.1016/j.bios.2015.05.065

    Article  CAS  Google Scholar 

  23. Guo X (2013) Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv Mater 25(25):3397–3408. doi:10.1002/adma.201301219

    Article  CAS  Google Scholar 

  24. Choudhary M, Singh A, Kaur S, Arora K (2014) Enhancing lung cancer diagnosis: electrochemical simultaneous bianalyte immunosensing using carbon nanotubes-chitosan nanocomposite. Appl Biochem Biotechnol 174(3):1188–1200. doi:10.1007/s12010-014-1020-1

    Article  CAS  Google Scholar 

  25. Najeeb CK, Chang J, Lee JH, Lee M, Kim JH (2011) Preparation of semiconductor-enriched single-walled carbon nanotube dispersion using a neutral pH water soluble chitosan derivative. J Colloid Interface Sci 354(2):461–466. doi:10.1016/j.jcis.2010.10.064

    Article  CAS  Google Scholar 

  26. Yu T, Cheng W, Li Q, Luo C, Yan L, Zhang D, Yin Y, Ding S, Ju H (2012) Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta 93:433–438. doi:10.1016/j.talanta.2012.02.047

    Article  CAS  Google Scholar 

  27. Tan Y, Chu X, Shen GL, Yu RQ (2009) A signal-amplified electrochemical immunosensor for aflatoxin B(1) determination in rice. Anal Biochem 387(1):82–86. doi:10.1016/j.ab.2008.12.030

    Article  CAS  Google Scholar 

  28. Zhao T, Liu L, Li G, Dang A, Li T (2012) Electrochemical determination of melamine with a glassy carbon electrode coated with a multi-wall carbon nanotube/chitosan composite. J Electrochem Soc 159(5):0

    Article  Google Scholar 

  29. Guo D, Zheng D, Mo G, Ye J (2009) Adsorptive stripping voltammetric detection of tea polyphenols at multiwalled carbon nanotubes-chitosan composite electrode. Electroanalysis 21(21):762–766

    Article  CAS  Google Scholar 

  30. Najeeb CK, Chang J, Lee JH, Lee M, Kim JH (2011) Preparation of semiconductor-enriched single-walled carbon nanotube dispersion using a neutral pH water soluble chitosan derivative. J Colloid Interface Sci 354(2):461–466

    Article  CAS  Google Scholar 

  31. Dong F, Luo R, Chen H, Zhang W, Ding S (2014) Amperometric immunosensor based on carbon nanotubes/chitosan film modified electrodes for detection of human leptin. Int J Electrochem Sci 9(12):6924–6935

    Google Scholar 

  32. Babaei A, Afrasiabi M, Babazadeh M (2010) A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis 22(15):1743–1749

    Article  CAS  Google Scholar 

  33. Xiong QR, Jin Y, Xing SG, Zhong Q, Zhang Y, Chu XG (2010) Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem 119(2):834–839

    Article  Google Scholar 

  34. Tanaka H, Takino M, Sugita-Konishi Y, Tanaka T, Toriba A, Hayakawa K (2009) Determination of nivalenol and deoxynivalenol by liquid chromatography/atmospheric pressure photoionization mass spectrometry. Rapid Commun Mass Spectrom 23(19):3119–3124. doi:10.1002/rcm.4233

    Article  CAS  Google Scholar 

  35. Olcer Z, Esen E, Muhammad T, Ersoy A, Budak S, Uludag Y (2014) Fast and sensitive detection of mycotoxins in wheat using microfluidics based real-time electrochemical profiling. Biosens Bioelectron 62:163–169. doi:10.1016/j.bios.2014.06.025

    Article  CAS  Google Scholar 

  36. Qiu YL, He QH, Xu Y, Bhunia AK, Tu Z, Chen B, Liu YY (2015) Deoxynivalenol-mimic nanobody isolated from a naive phage display nanobody library and its application in immunoassay. Anal Chim Acta 887:201–208. doi:10.1016/j.aca.2015.06.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (Grant Nos. 31071093, 31170129 and 31200064) and the Science and Technology Planning Project of YuZhong District of Chongqing City, China (No. 20140119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingFu Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Y., Li, C., Yang, X. et al. Electrochemical immunosensor using single-walled carbon nanotubes/chitosan for ultrasensitive detection of deoxynivalenol in food samples. J Appl Electrochem 46, 1049–1057 (2016). https://doi.org/10.1007/s10800-016-0984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0984-7

Keywords

Navigation