Skip to main content
Log in

Modeling of rheological behavior for polymer nanocomposites via Brownian dynamic simulation

  • Short Communication
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Reptation dynamics of the coarse-grained polymer molecular chain is investigated to predict rheological behavior of polymeric nanocomposites by applying Brownian dynamics simulation to the proposed full chain reptation model. Extensibility of polymer chain and constraint release from chain stretch or retraction are of main concern in describing the nanocomposite systems. Rheological results are well predicted by applying the improved simulation algorithm using stepwise Wiener processes. Strong shear thinning and elongational strain hardening are predicted and compared with the experimental results of polyamide 6/organoclay nanocomposites. The full chain reptation model enables us to predict dynamic motion of the polymer chain segments and understand mechanisms for characteristic rheological behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • de Gennes, P.G., 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys. 55, 572–579.

    Article  Google Scholar 

  • des Cloizeaux, J., 1990, Relaxation of entangled polymers in melts, Macromolecules 23, 3992–4006.

    Article  Google Scholar 

  • Doi, M., 1983, Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model, J. Polym. Sci. Pt. B-Polym. Phys. 21, 667–684.

    Article  Google Scholar 

  • Doi, M. and S.F. Edwards, 1986, The Theory of Polymer Dynamics, Clarendon, Oxford.

    Google Scholar 

  • Fang, J., M. Kröger, and H.C. Öttinger, 2000, A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows, J. Rheol. 44, 1293–1317.

    Article  Google Scholar 

  • Fornes, T.D., P.J. Yoon, H. Keskkula, and D.R. Paul, 2001, Nylon 6 nanocomposites: The effect of matrix molecular weight, Polymer 42, 9929–9940.

    Article  Google Scholar 

  • Hua, C.C. and J.D. Schieber, 1998, Segment connectivity, chainlength breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions, J. Chem. Phys. 109, 10018–10027.

    Article  Google Scholar 

  • Kloeden, P.E. and E. Platen, 1992, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, New York.

    Book  Google Scholar 

  • Krishinamoori, R. and E.P. Giannelis, 1997, Rheology of endtethered polymer layered silicate nanocomposites, Macromolecules 30, 4097–4102.

    Article  Google Scholar 

  • Marrucci, G., 1985, Relaxation by reptation and tube enlargement: A model for polydisperse polymers, J. Polym. Sci. Pt. BPolym. Phys. 23, 159–177.

    Article  Google Scholar 

  • Marrucci, G., 1996, Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule, J. Non-Newton. Fluid Mech. 62, 279–289.

    Article  Google Scholar 

  • Okamoto, M., P.H. Nam, P. Maiti., T. Kotaka, N. Hasegawa, and A. Usuki, 2001, A house of card structure in polypropylene/clay nanocomposites under elongational flow, Nano Lett. 1, 295–298.

    Article  Google Scholar 

  • Öttinger, H.C., 1999, A thermodynamically admissible reptation model for fast flows of entangled polymers, J. Rheol. 43, 1461–1493.

    Article  Google Scholar 

  • Seong, D.G., T.J. Kang, and J.R. Youn, 2005, Rheological characterization of polymer-based nanocomposites with different nanoscale dispersions, e-Polymers 5, 1–14.

    Article  Google Scholar 

  • Tanoue, S., L.A. Utracki, A. Garcia-Rejon, P. Sammut, M. Ton-That, I. Pesneau, M.R. Kamal, and J. Lyngaae-Jørgensen, 2004, Melt compounding of different grades of polystyrene with organoclay. Part 2: Rheological properties, Polym. Eng. Sci. 44, 1061–1076.

    Article  Google Scholar 

  • Utracki, L.A. and J. Lyngaae-Jørgensen, 2002, Dynamic melt flow of nanocomposites based on poly-ε-caprolactam, Rheol. Acta 41, 394–407.

    Article  Google Scholar 

  • Vaia, R.A., S. Vasudevan, W. Krawiec, L.G. Scanlon, and E.P. Giannelis, 1995, New polymer electrolyte nanocomposites: melt intercalation of poly(ethylene oxide) in mica-type silicates, Adv. Mater. 7, 154–156.

    Article  Google Scholar 

  • Wang, K.H., M. Xu, Y.S. Choi, and I.J. Chung, 2001, Effect of aspect ratio of clay on melt extensional process of maleated polypropylene/clay nanocomposites, Polym. Bull. 46, 499–505.

    Article  Google Scholar 

  • Zang, Q. and L.A. Archer, 2002, Poly(ethylene oxide)/silica nanocomposites: Structure and rheology, Langmuir 18, 10435–10442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seok Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seong, D.G., Youn, J.R. & Song, Y.S. Modeling of rheological behavior for polymer nanocomposites via Brownian dynamic simulation. Korea-Aust. Rheol. J. 28, 381–388 (2016). https://doi.org/10.1007/s13367-016-0036-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0036-1

Keywords

Navigation