Skip to main content
Log in

Control of Bovine Mastitis: Old and Recent Therapeutic Approaches

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mastitis is defined as the inflammatory response resulting of the infection of the udder tissue and it is reported in numerous species, namely in domestic dairy animals. This pathology is the most frequent disease of dairy cattle and can be potentially fatal. Mastitis is an economically important pathology associated with reduced milk production, changes in milk composition and quality, being considered one of the most costly to dairy industry. Therefore, the majority of research in the field has focused on control of bovine mastitis and many efforts are being made for the development of new and effective anti-mastitis drugs. Antibiotic treatment is an established component of mastitis control programs; however, the continuous search for new therapeutic alternatives, effective in the control and treatment of bovine mastitis, is urgent. This review will provide an overview of some conventional and emerging approaches in the management of bovine mastitis’ infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alluwaimi AM (2004) The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Res Vet Sci 77(3):211–222

    Article  CAS  PubMed  Google Scholar 

  2. Atulya M, Mathew AJ, Rao JV, Rao CM (2014) Influence of milk components in establishing biofilm mediated bacterial mastitis infections in cattle: a fractional factorial approach. Res Vet Sci 96:25–27

    Article  CAS  PubMed  Google Scholar 

  3. Bannerman DD, Wall RJ (2005) A novel strategy for the prevention of Staphylococcus aureus-induced mastitis in dairy cows. Information Systems for Biotechnology (isb) news report, 1–4

  4. Basdew IH, Laing MD (2011) Mini-review: biological control of bovine mastitis using bacteriophage therapy. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. World Scientific, Singapore, pp 386–393

    Google Scholar 

  5. Basdew IH, Laing MD (2014) Stress sensitivity assays of bacteriophages associated with Staphylococcus aureus, causal organism of bovine mastitis. Afr J Microbiol Res 8(2):200–210

    Article  Google Scholar 

  6. Baskaran SA, Kazmer GW, Hinckley L, Andrew SM, Venkitanarayanan K (2009) Antibacterial effect of plant-derived antimicrobials on major bacterial mastitis pathogens in vitro. J Dairy Sci 92(4):1423–1429

    Article  CAS  Google Scholar 

  7. Berni E, Marcato PD, Nakazato G, Kobayashi RKT, Vacchi FI, Umbuzeiro GA, Durán N (2013) Violacein/poly(ε-caprolactone)/chitosan nanoparticles against bovine mastistis: Antibacterial and ecotoxicity evaluation. J Phys 429:012030

    Google Scholar 

  8. Bogni C, Odierno L, Raspanti C, Giraudo J, Larriestra A, Reinoso E, Lasagno M, Ferrari M, Ducrós E, Frigerio C, Bettera S, Pellegrino M, Frola I, Dieser S, Vissio C (2011) War against mastitis: current concepts on controlling bovine mastitis Pathogens. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. World Scientific, Singapore, pp 483–494

    Google Scholar 

  9. Bouchard DS, Rault L, Berkova N, Le Loir Y, Even S (2013) Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 79(3):877–885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Cardozo VF, Lancheros CA, Narciso AM, Valereto EC, Kobayashi RK, Seabra AB, Nakazato G (2014) Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles against Staphylococcus aureus and Escherichia coli from bovine mastitis. Int J Pharm 473(1–2):20–29

    Article  CAS  PubMed  Google Scholar 

  11. Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brüssow H (2004) Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol 186:7069–7083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Crist WL, Harmon RJ, O’Leary J, McAllister AJ (1997) Mastitis and its control [online]

  13. Dehkordi SH, Hosseinpour F, Kahrizangi AE (2011) An in vitro evaluation of antibacterial effect of silver nanoparticles on Staphylococcus aureus isolated from bovine subclinical mastitis. Afr J Biotechnol 10(52):10795–10797

    CAS  Google Scholar 

  14. DeGraves FJ, Fetrow J (1991) Partial budget analysis of vaccinating dairy cattle against coliform mastitis with an Escherichia coli J5 vaccine. J Am Med Assoc 199:451

    CAS  Google Scholar 

  15. Dias RS, Eller MR, Duarte VS, Pereira ÂL, Silva CC, Mantovani HC, Oliveira LL, Silva Ede A, De Paula SO (2013) Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis. J Anim Sci 91(8):3930–3939

    Article  CAS  PubMed  Google Scholar 

  16. Domadia P, Swarup S, Bhunia A, Sivaraman J, Dasgupta D (2007) Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem Pharmacol 74:831–840

    Article  CAS  PubMed  Google Scholar 

  17. Doss A, Mubarack HM, Vijayasanthi M, Venkataswamy R (2012) In vitro antibacterial activity of certain wild medicinal plants against bovine mastitis isolated contagious pathogens. Asian J Pharm Clin Res 5(2):90–93

    Google Scholar 

  18. Fenton M, Keary R, McAuliffe O, Ross RP, O’Mahony J, Coffey A (2013) Bacteriophage-derived peptidase CHAPK eliminates and prevents staphylococcal biofilms. Int J Microbiol 2013:625341

    Article  PubMed Central  PubMed  Google Scholar 

  19. Fonseca AP, Estrela FT, Moraes TS, Carneiro LJ, Bastos JK, Santos RA, Ambrósio SR, Martins CHG, Veneziani RCS (2013) In vitro antimicrobial activity of plant-derived diterpenes against bovine mastitis bacteria. Molecules 18:7865–7872

    Article  CAS  PubMed  Google Scholar 

  20. Gill JJ, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM (2006) Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother 50(9):2912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gopinath SM, Suneetha TB, Mruganka VD, Ananda S (2011) Evaluation of antibacterial activity of Tabernaemontana divaricata (L.) leaves against the causative organisms of bovine mastitis. Int J Res Phytochem Pharmacol 1(4):211–213

    Google Scholar 

  22. Hafez SM, Ismael AB, Mahmoud MB, Elaraby AA (2013) Development of new strategy for non-antibiotic therapy: bovine lactoferrin has a potent antimicrobial and immunomodulator effects. Adv Infect Dis 3:185–192

    Article  Google Scholar 

  23. Hoedemaker M, Korff B, Edler B, Emmert M, Bleckmann E (2001) Dynamics of Staphylococcus aureus infections during vaccination with an autogenous bacterin in dairy cattle. J Vet Med 48(5):373–383

    Article  CAS  Google Scholar 

  24. Kazemi J, Ahmadi M, Saei HD, Adib hesami M (2014) Antibacterial effect of silver nanoparticles along with protein synthesis-inhibiting antibiotics on Staphylococcus aureus isolated from cattle mastitis. Biol J Microorg 2(8):15–22

    Google Scholar 

  25. Khayatnouri MH, Topchi A (2013) Evaluation of antibacterial effect of monolaurin on Staphylococcus aureus isolated from bovine mastitis. Afr J Pharm Pharmacol 7(19):1163–1166

    Google Scholar 

  26. Kutila T, Pyörälä S, Kaartinen L, Isomäki R, Vahtola K, Myllykoski L, Saloniemi H (2003) Lactoferrin and citrate concentrations at drying-off and during early mammary involution of dairy cows. J Vet Med Series A 50(7):350–353

    Article  CAS  Google Scholar 

  27. Kwiatek M, Parasion S, Mizak L, Gryko R, Bartoszcze M, Kocik J (2012) Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol 157:225–234

    Article  CAS  PubMed  Google Scholar 

  28. Laport MS, Marinho PR, Santos OC, de Almeida P, Romanos MT, Muricy G, Brito MA, Giambiagi-deMarval M (2012) Antimicrobial activity of marine sponges against coagulase-negative staphylococci isolated from bovine mastitis. Vet Microbiol 155(2–4):362–368

    Article  PubMed  Google Scholar 

  29. Loeza-Ángeles H, López-Meza JE, Ochoa-Zarzosa A (2011) Antimicrobial effects of plant defence peptides expressed by bovine endothelial cells on intracellular pathogens. Electron J Biotechnol 14(5):1–1

    Google Scholar 

  30. Mubarack HM, Doss AR, Dhanabalan R, Venkataswamy R (2011) Activity of some selected medicinal plant extracts against bovine mastitis pathogens. J Anim Vet Adv 10(6):738–741

    Article  Google Scholar 

  31. O’Flaherty S, Coffey A, Meaney WJ, Fitzgerald GF, Ross RP (2005) Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279

    Article  PubMed  Google Scholar 

  32. Ohno T, Kita M, Yamaoka Y, Imamura S, Yamamoto T, Mitsufuji S, Kodama T, Kashima K, Imanishi J (2003) Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter 8:207–215

    Article  CAS  PubMed  Google Scholar 

  33. Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86–92

    PubMed Central  PubMed  Google Scholar 

  34. Pereira UP, Oliveira DGS, Mesquita LR, Costa GM, Pereira LJ (2011) Efficacy of Staphylococcus aureus vaccines for bovine mastitis: a systematic review. Vet Microbiol 148:117–124

    Article  CAS  PubMed  Google Scholar 

  35. Petrovski KR, Trajcev M, Buneski G (2006) A review of the factors affecting the costs of bovine mastitis. J South Afr Vet Assoc 77:52–60

    CAS  Google Scholar 

  36. Philpot WN, Nickerson SC (1999) Mastitis: counter attack. Westfalia Surge LLC, Illinois

    Google Scholar 

  37. Ruegg PL (2009) Management of mastitis on organic and conventional dairy farms. J Anim Sci 87:43–55

    Article  CAS  PubMed  Google Scholar 

  38. Santana HF, Barbosa AAT, Ferreira SO, Mantovani HC (2012) Bactericidal activity of ethanolic extracts of propolis against Staphylococcus aureus isolated from mastitic cows. World J Microbiol Biotechnol 28(2):485–491

    Article  PubMed  Google Scholar 

  39. Seegers H, Fourichon C, Beaudeau F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 34:475–491

    Article  PubMed  Google Scholar 

  40. Serna-Cock L, Enríquez-Valencia CE, Jiménez-Obando EM, Campos-Gaona R (2012) Effects of fermentation substrates and conservation methods on the viability and antimicrobial activity of Weissella confusa and its metabolites. Electron J Biotechnol 5(3):6

    Google Scholar 

  41. Shkreta L, Talbot BG, Diarra MS, Lacasse P (2004) Immune responses to a DNA/protein vaccination strategy against Staphylococcus aureus induced mastitis in dairy cows. Vaccine 23:114–126

    Article  CAS  PubMed  Google Scholar 

  42. Taemchuay D, Rukkwamsuk T, Sakpuaram T, Ruangwises N (2009) Antibacterial activity of crude extracts of Centella asiatica against Staphylococcus aureus in bovine mastitis. Kasetsart Vet 19(3):119–128

    Google Scholar 

  43. Talbot BG, Lacasse P (2005) Progress in the development of mastitis vaccines. Livest Prod Sci 98:101–113

    Article  Google Scholar 

  44. Tiwari J, Babra C, Tiwari HK, Williams V, De Wet S, Gibson J, Paxman A, Morgan E, Costantino P, Sunagar R, Isloor S, Hegde NR, Mukkur T (2013) Trends in therapeutic and prevention strategies for management of bovine mastitis: an overview. Vaccines Vaccin 4:2

    Google Scholar 

  45. Tolosa T, Wagaye H, Regassa F (2009) A study on in vitro antimicrobial effects of some selected plants on Staphylococcus aureus isolated from bovine clinical mastitis. Int J Vet Med 8(1):1–7

    Google Scholar 

  46. Valde JP, Lawson LG, Lindberg A, Agger JF, Saloniemi H, Østerås O (2004) Cumulative risk of bovine mastitis treatments in Denmark, Finland, Norway and Sweden. Acta Vet Scand 45:201–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Xuefeng Y (2009) Post-antibiotic effect of amoxicillin nanoparticles against main pathogenic bacteria of bovine mastitis in vitro. J Northwest Sci-Tech Univ Agric For 37(6):1–6

    Google Scholar 

  48. Wang XF, Zhang SL, Zhu LY, Xie SY, Dong Z, Wang Y, Zhou WZ (2012) Enhancement of antibacterial activity of tilmicosin against Staphylococcus aureus by solid lipid nanoparticles in vitro and in vivo. Vet J 191(1):115–120

    Article  CAS  PubMed  Google Scholar 

  49. White DG, McDermott PF (2001) Emergence and transfer of antibiotic resistance. J Dairy Sci 84(E. Suppl):E151–E155

    Article  CAS  Google Scholar 

  50. Wilson DJ, González RN (2003) Vaccination strategies for reducing clinical severity of coliform mastitis. Vet Clin North Am Food Anim Pract 19:187–197

    Article  PubMed  Google Scholar 

  51. Zecconi A, Binda E, Borromeo V, Piccinini R (2005) Relationship between some Staphylococcus aureus pathogenic factors and growth rates and somatic cell counts. J Dairy Res 72:203–208

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

F. Gomes acknowledge the financial support of the Portuguese Foundation for Science and Technology through the Grant SFRH/BPD/84488/2012 and for financial support to the CEB research center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Gomes.

Ethics declarations

Conflicts of interest

No ne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, F., Henriques, M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr Microbiol 72, 377–382 (2016). https://doi.org/10.1007/s00284-015-0958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0958-8

Keywords

Navigation