Skip to main content
Log in

Formation of hollow fiber membranes doped with multiwalled carbon nanotube dispersions

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The structure and properties of dispersions of pristine and covalently modified multiwalled carbon nanotubes (MWCNTs) in N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF) and water have been studied. It has been shown that the dispersions in NMP have the highest stability and smallest particle size. The study of MWCNT dispersions in DMAc with various dispersing polymers, such as polyvinylpyrrolidone (PVP), polyethylene glycol, block copolymers of polyethylene glycol and polypropylene glycol of various molecular weights, ethylenediamine tetrakis(ethoxylate-block-propoxylate) tetrol, and ethylenediamine tetrakis(propoxylate-block-ethoxylate) tetrol has revealed that PVP has the best dispersing capacity. It has been found that the particle size and the yield of MWCNTs dispersed in DMAc depend on the nature and molecular weight of the dispersing polymer, as well as on the solvent quality. Polysulfone hollow fiber ultrafiltration membranes with PVP-modified MWCNT additives (PVP is one of the components of the spinning solutions) have been prepared by the phase inversion method. It has been found that the addition of 0.00084-0.0048% MWCNT in a spinning solution makes it possible to vary the transport properties of the hollow fiber membranes in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. D. Bergin, V. Nicolosi, P. V. Streich, and S. Giordani, Adv. Mater. 20, 1876 (2008).

    Article  CAS  Google Scholar 

  2. J. M. Hughes, D. Aherne, S. D. Bergin, et al., Nanotechnology 23, 265604 (2012).

    Article  Google Scholar 

  3. C. A. Furtado, U. J. Kim, H. R. Gutierrez, et al., J. Am. Chem. Soc. 126, 6095 (2004).

    Article  CAS  Google Scholar 

  4. S. Giordani, S. D. Bergin, V. Nicolosi, et al., J. Phys. Chem. B 110, 15708 (2006).

    Article  CAS  Google Scholar 

  5. R. Krupke, F. Hennrich, O. Hampe, and M. M. Kappes, J. Phys. Chem. B 107, 5667 (2003).

    Article  CAS  Google Scholar 

  6. T. T. Nguyen, S. U. Nguyen, D. T. Phuong, et al., Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 35015 (2011).

    Google Scholar 

  7. S. D. Bergin, Z. Sun, D. Rickard, et al., Am. Chem. Soc. Nano 3, 2340 (2009).

    CAS  Google Scholar 

  8. S. D. F. Brandao, D. Andrada, A. F. Mesquita, et al., J. Phys. Condens. Matter 22, 334222 (2010).

    Article  CAS  Google Scholar 

  9. S. D. Bergin, Z. Sun, P. Streich, et al., J. Phys. Chem. C 114, 231 (2010).

    Article  CAS  Google Scholar 

  10. L. Meng, C. Fu, and Q. Lu, Prog. Nat. Sci. 19, 801 (2009).

    Article  CAS  Google Scholar 

  11. S. W. Kim, T. Kim, Y. S. Kim, et al., Carbon 50, 3 (2012).

    Article  CAS  Google Scholar 

  12. L. Vaisman, H. D. Wagner, and G. Marom, Adv. Colloid Interface Sci. 128–130, 37 (2006).

    Article  Google Scholar 

  13. P. Liu, Eur. Polym. J. 41, 2693 (2005).

    Article  CAS  Google Scholar 

  14. Z. Sun, V. Nicolosi, D. Rickard, et al., J. Phys. Chem. C 112, 10692 (2008).

    Article  CAS  Google Scholar 

  15. H. T. Ham Y. S. Choi, and I. J. Chung, J. Colloid Interface Sci. 286, 216 (2005).

    Article  Google Scholar 

  16. V. C. Moore, M. S. Strano, E. H. Haroz, et al., Nano-Lett. 3, 1379 (2003).

    Article  CAS  Google Scholar 

  17. M. Granite, A. Radulescu, and Y. Cohen, Langmuir 28, 11025 (2012).

    Article  CAS  Google Scholar 

  18. S. A. Nim, O. Sae-Khow, F.A. Witzmann, and S. Mitra, J. Colloid Interface Sci. 355, 383 (2011).

    Article  Google Scholar 

  19. M. J. O’Connel, P. Boul, L. M. Ericson, et al., Chem. Phys. Lett. 342, 265 (2001).

    Article  Google Scholar 

  20. J. M. Gonzalez-Dominguez, M. A. Tesa-Serrate, A. Anson-Casaos, et al., Phys. Chem. C 116, 7399 (2012).

    Article  CAS  Google Scholar 

  21. H. Shin, B. G. Min, W. Jeong, and C. Park, Macromol. Rapid. Commun. 26, 1451 (2005).

    Article  CAS  Google Scholar 

  22. A. D. Crescenzo, M. Aschi, and A. Fontana, Macromolecules 45, 8043 (2012).

    Article  Google Scholar 

  23. T. Hasan, V. Scardaci, P. H. Tan, et al., Physica E 40, 2414 (2008).

    Article  CAS  Google Scholar 

  24. T. Hasan, V. Scardaci, P. H. Tan, et al., J. Phys. Chem. C 111, 12594 (2007).

    Article  CAS  Google Scholar 

  25. E. Nativ-Roth, R. Shvartzman-Cohen, C. Bounioux et al., Macromolecules 40, 3676 (2007).

    Article  CAS  Google Scholar 

  26. A. L. Ahmad, Z. A. Jawad, S. C. Low, and S. H. S. Zein, J. Membr. Sci. 451, 55 (2014).

    Article  CAS  Google Scholar 

  27. S. M. Sanip, A. F. Ismail, and P. S. Goh, Sep. Purif. Technol. 78, 208 (2011).

    Article  CAS  Google Scholar 

  28. S. Kim, J. R. Jinschek, H. Chen, et al., Nano Lett. 7, 2806 (2007).

    Article  CAS  Google Scholar 

  29. T. H. Weng, H. H. Tseng, and M. Y. Wey, Int. J. Hydrogen Energy 34, 8707 (2009).

    Article  CAS  Google Scholar 

  30. A. M. Grekhov, Yu. S. Eremin, G. A. Dibrov, and V. V. Volkov, Pet. Chem. 53, 549 (2013).

    Article  CAS  Google Scholar 

  31. E.-S. Kim, G. Hwang, M. G. El-Din, and Y. Liu, J. Membr. Sci. 394/395, 37 (2012).

    Article  Google Scholar 

  32. L. Dumee, J. Lee, and K. Sears, J. Membr. Sci. 427, 422 (2013).

    Article  CAS  Google Scholar 

  33. A. Tiraferri, C. D. Vecitis, and M. Elimelech, ACS Appl. Mater. Interfaces 3, 2869 (2011).

    Article  CAS  Google Scholar 

  34. Y. Medina-Gonzalez and J.-C. Remigy, Mater. Lett. 65, 229 (2011).

    Article  CAS  Google Scholar 

  35. G. S. Ajmani, D. Goodwin, K. Marsh, and D. H. Fairbrother, Water Res. 46, 5645 (2012).

    Article  CAS  Google Scholar 

  36. X. Liu, M. Wang, S. Zhang, and B. Pan, J. Environ. Sci. 25, 1263 (2013).

    Article  CAS  Google Scholar 

  37. J.-H. Choi, J. Jegal, and W.-N. Kim, J. Membr. Sci. 284, 406 (2006).

    Article  CAS  Google Scholar 

  38. S. Qiu, L. Wu, and X. Pan, J. Membr. Sci. 342, 165 (2009).

    Article  CAS  Google Scholar 

  39. J. Yin, G. Zhu, and B. Deng, J. Membr. Sci. 437, 237 (2013).

    Article  CAS  Google Scholar 

  40. Y.-L. Liu, Y. Chang, Y.-H. Chang, and Y.-J. Shih, Appl. Mater. Interfaces 2, 3642 (2010).

    Article  CAS  Google Scholar 

  41. E. Celik, H. Park, H. Choi, and H. Choi, Water Res. 45, 274 (2011).

    Article  CAS  Google Scholar 

  42. Y. Mansourpanah, S. S. Madaeni, and A. Rahimpour, Desalination 277, 171 (2011).

    Article  CAS  Google Scholar 

  43. Y. Zhao, Z. Xu, M. Shan, et al., Sep. Purif. Technol. 103, 78 (2013).

    Article  CAS  Google Scholar 

  44. S. Majeed, D. Fierro, and K. Buhr, J. Membr. Sci. 403/404, 101 (2012).

    Article  Google Scholar 

  45. P. Gunawan et al., ACSNano 5, 10033 (2011).

    CAS  Google Scholar 

  46. C. Tang, Q. Zhang, and K. Wang, J. Membr. Sci. 337, 240 (2009).

    Article  CAS  Google Scholar 

  47. O. S. Rabinovich, V. A. Borodulya, A. N. Blinova, et al., Theor. Found. Chem. Eng. 48, 1 (2014).

    Article  CAS  Google Scholar 

  48. T. V. Plisko and A. V. Bildyukevich, Colloid Polym. Sci. 292, 2571 (2014).

    Article  CAS  Google Scholar 

  49. B. J. Landi, H. J. Ruf, J. J. Worman, and R. P. Raffaelle, J. Phys. Chem. B 108, 17089 (2004).

    Article  CAS  Google Scholar 

  50. A. V. Bil’dyukevich, T. V. Plisko, G. A. Branitskii, et al., Pet. Chem. 53, 521 (2013).

    Article  Google Scholar 

  51. R. Shvartzman-Cohen, M. Florent, D. Goldfarb, et al., Langmuir 24, 4625 (2008).

    Article  CAS  Google Scholar 

  52. R. Shvartzman-Cohen, E. Nativ-Roth, E. Baskaran, and Y. Levi-Kalisman, J. Am. Chem. Soc. 126, 14850 (2004).

    Article  CAS  Google Scholar 

  53. B. B. Khatua, D. J. Lee, H. Y. Kim, and J. K. Kim, Macromolecules 37, 2454 (2004).

    Article  CAS  Google Scholar 

  54. Y.Y. Huang, S.V. Ahir, and E.M. Terentjev, Phys. Rev. B 73, 125422 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Plisko.

Additional information

Original Russian Text © T.V. Plisko, A.V. Bildyukevich, V.V. Volkov, N.N. Osipov, 2015, published in Membrany i Membrannye Tekhnologii, 2015, Vol. 5, No. 1, pp. 69–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plisko, T.V., Bildyukevich, A.V., Volkov, V.V. et al. Formation of hollow fiber membranes doped with multiwalled carbon nanotube dispersions. Pet. Chem. 55, 318–332 (2015). https://doi.org/10.1134/S0965544115040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544115040064

Keywords

Navigation