Skip to main content
Log in

Xanthomonas campestris expansin-like X domain is a structurally disordered beta-sheet macromolecule capable of synergistically enhancing enzymatic efficiency of cellulose hydrolysis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To biochemically characterize an expansin-like X protein domain from Xanthomonas campestris (XcEXLX1) and to study its synergy with cellulases in cellulose depolymerization.

Results

The protein was purified using a combination of ion exchange and size exclusion chromatography rendering about 30 mg pure protein/l culture medium. Circular dichroism spectroscopy and small-angle X-ray scattering studies of XcEXLX1 reveal that it is a strongly disordered β-sheet protein. Its low resolution envelope fits nicely the crystallographic structure of the homologous protein EXLX1 from Bacillus subtillis. Furthermore, we demonstrate that XcEXLX1 shows a synergistic, pH-dependent effect when combined with a commercial enzymatic preparation (Accellerase 1500), enhancing its hydrolytic activity on a cellulosic substrate. The strongest effect was observed in acid pHs with an increase in sugar release of up to 36 %.

Conclusion

The synergistic effect arising from the action of the expansin-like protein was considerable in the presence of significantly larger amounts of the commercial enzymatic cocktail then previously observed (0.35 FPU of Accellerase 1500/g substrate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adney B, Baker J (1996) Measurement of ellulase activities. National Renewable Energy Laboratory

  • Andersson D, Carlsson U, Freskgard PO (2001) Contribution of tryptophan residues to the CD spectrum of the extracellular domain of human tissue factor: application in folding studies and prediction of secondary structure. Eur J Biochem 268:1118–1128

    Article  CAS  PubMed  Google Scholar 

  • Brethauer S, Studer MH, Yang B, Wyman CE (2011) The effect of bovine serum albumin on batch and continuous enzymatic cellulose hydrolysis mixed by stirring or shaking. Bioresour Technol 102:6295–6298

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Moreira B, Bates PA (2002) Domain fishing: a first step in protein comparative modelling. Bioinformatics 18:1141–1142

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  • Fischer H (2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr 43:101–109

    Article  CAS  Google Scholar 

  • Georgelis N, Nikolaidis N, Cosgrove DJ (2014) Biochemical analysis of expansin-like proteins from microbes. Carbohydr Polym 100:17–23

    Article  CAS  PubMed  Google Scholar 

  • Hammersley AP (1997) FIT2d: an introduction and overview. E.S.R.F, Grenoble

    Google Scholar 

  • Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Koivula A, Wada M et al (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284:36186–36190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jalak J, Valjamae P (2014) Multi-mode binding of cellobiohydrolase Cel7A from Trichoderma reesei to cellulose. PLoS One 9:e108181

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeyachandran YL, Mielczarski E, Rai B, Mielczarski JA (2009) Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir 25:11614–11620

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Sethi A, Gaiotto T et al (2013) Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J Biol Chem 288:24164–24172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kende H, Bradford KJ, Brummell DA et al (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  PubMed  Google Scholar 

  • Kerff F, Amoroso A, Herman R et al (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105:16876–16881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim ES, Lee HJ, Bang W-G et al (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102:1342–1353

    Article  CAS  PubMed  Google Scholar 

  • Kurašin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177

    Article  PubMed Central  PubMed  Google Scholar 

  • Lees JG, Miles AJ, Wien F, Wallace BA (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics 22:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M et al (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100:484–489

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin H, Shen Q, Zhan JM et al (2013) Evaluation of bacterial expansin EXLX1 as a cellulase synergist for the saccharification of lignocellulosic agro-industrial wastes. PLoS One 8:e75022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu YS, Baker JO, Zeng Y et al (2011) Cellobiohydrolase hydrolyzes crystalline cellulose on hydrophobic faces. J Biol Chem 286:11195–11201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rambo RP, Tainer JA (2011) Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95:559–571

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saha BC (2004) Lignocellulose biodegradation and applications in biotechnology. Lignocellulose biodegradation. American Chemical Society, pp 2–34

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:8

    Article  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Wang H, Kobayashi S, Hiraide H et al (2015) The effect of nonenzymatic protein on lignocellulose enzymatic hydrolysis and simultaneous saccharification and fermentation. Appl Biochem Biotechnol 175:287–299

    Article  CAS  PubMed  Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Livia Regina Manzine, Andressa Alves Pinto, Derminda I. de Moraes, Joci Neuby Alves Macedo, Ethel Schuster and José Luis Lopes for the technical support. This research was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) via research Grants # 2008/56255-9, 2007/08706-9, 2010/52362-5 and 2009/05349-6, by Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) via INCT do Bioetanol and Grant # 471834/2009-2, 301981/2011-6 and 550931/2011-2.

Supporting information

Supplementary methods. Construction of the expression plasmid, Expression of the protein and its purification process.

Supplementary Fig. 1—Aligned sequences of gene (1) Xcc3535, (2) 2BH0 (BsEXLX1) and (3) 2HCZ (expansin of Zea mays), using the multiple alignment Clustal program (Higgins and Sharp 1988).

Supplementary Fig. 2—Size-exclusion chromatogram of XcEXLX1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Polikarpov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junior, A.T., Dolce, L.G., de Oliveira Neto, M. et al. Xanthomonas campestris expansin-like X domain is a structurally disordered beta-sheet macromolecule capable of synergistically enhancing enzymatic efficiency of cellulose hydrolysis. Biotechnol Lett 37, 2419–2426 (2015). https://doi.org/10.1007/s10529-015-1927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1927-9

Keywords

Navigation