Skip to main content

Advertisement

Log in

Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Bioactive nanocomposite scaffolds with cell-adhesive surface have excellent bone regeneration capacities. Fibronectin (FN)-immobilized nanobioactive glass (nBG)/polycaprolactone (PCL) (FN-nBG/PCL) scaffolds with an open pore architecture were generated by a robotic-dispensing technique. The surface immobilization level of FN was significantly higher on the nBG/PCL scaffolds than on the PCL scaffolds, mainly due to the incorporated nBG that provided hydrophilic chemical-linking sites. FN-nBG/PCL scaffolds significantly improved cell responses, including initial anchorage and subsequent cell proliferation. Although further in-depth studies on cell differentiation and the in vivo animal responses are required, bioactive nanocomposite scaffolds with cell-favoring surface are considered to provide promising three-dimensional substrate for bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chang KY, Hung LH, Chu IM, Ko CS, Lee YD (2010) The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J Biomed Mater Res 92:712–723

    Article  Google Scholar 

  • Gentile F, Tirinato L, Battista E, Causa F, Liberale C, Di Fabrizio EM, Decuzzi P (2010) Cells preferentially grow on rough substrates. Biomaterials 31:7205–7212

    Article  CAS  PubMed  Google Scholar 

  • Gorbahn M, Klein MO, Lehnert M, Ziebart T, Brullmann D, Koper I, Wagner W, Al-Nawas B, Veith M (2012) Promotion of osteogenic cell response using quasicovalent immobilized fibronectin on titanium surfaces: introduction of a novel biomimetic layer system. J Oral Maxillofac Surg 70:1827–1834

    Article  PubMed  Google Scholar 

  • Hidalgo-Bastida LA, Cartmell SH (2010) Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Eng Part B Rev 16:405–412

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Kang W, Jeon E, Jang JH (2010) Construction and expression of a recombinant fibronectin III 10 protein for integrin-mediated cell adhesion. Biotechnol Lett 32:29–33

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Waters MS, Farooque TM, Young MF, Simon CG Jr (2012) Freeform fabricated scaffolds with roughened struts that enhance both stem cell proliferation and differentiation by controlling cell shape. Biomaterials 33:4022–4030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Yu H-S, Lee G-S, Ji A, Hyun JK, Kim H-W (2011) Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells. J R Soc Interface 8:998–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Park J-H, Yun Y-R, Jang J-H, Lee E-J, Chrzanowski W, Wall IB, Kim H-W (2013) Tethering bi-functional protein onto mineralized polymer scaffolds to regulate mesenchymal stem cell behaviors for bone regeneration. J Mater Chem B 1:2731–2741

    Article  CAS  Google Scholar 

  • Mangano C, De Rosa A, Desiderio V, d’Aquino R, Piattelli A, De Francesco F, Tirino V, Mangano F, Papaccio G (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31:3543–3551

    Article  CAS  PubMed  Google Scholar 

  • Misra SK, Philip SE, Chrzanowski W, Nazhat SN, Roy I, Knowles JC, Salih V, Boccaccini AR (2009) Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment. J R Soc Interface 6:401–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oh CH, Hong SJ, Jeong I, Yu HS, Jegal SH, Kim HW (2010a) Development of robotic dispensed bioactive scaffolds and human adipose-derived stem cell culturing for bone tissue engineering. Tissue Eng Part C Methods 16:561–571

    Article  CAS  PubMed  Google Scholar 

  • Oh S-A, Kim S-H, Won J-E, Kim J-J, Shin US, Kim H-W (2010b) Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol–gel bioactive glass granules. J Tissue Eng 1:475260

    Article  Google Scholar 

  • Roohani-Esfahani SI, Nouri-Khorasani S, Lu ZF, Appleyard RC, Zreiqat H (2011) Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomater 7:1307–1318

    Article  CAS  PubMed  Google Scholar 

  • Seo S-J, Mahapatra C, Singh RK, Knowles JC, Kim H-W (2014) Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850

    Article  PubMed Central  PubMed  Google Scholar 

  • Tampieri A, Sprio S, Ruffini A, Celotti G, Lesci IG, Roveri N (2009) From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem 19:4973–4980

    Article  CAS  Google Scholar 

  • Zhang Y, Xiang Q, Dong S, Li C, Zhou Y (2010) Fabrication and characterization of a recombinant fibronectin/cadherin bio-inspired ceramic surface and its influence on adhesion and ossification in vitro. Acta Biomater 6:776–785

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64:1129–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant of Priority Research Centers Program (Grant #2009-0093829), through the National Research Foundation of Korea (NRF), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, JE., Mateos-Timoneda, M.A., Castano, O. et al. Fibronectin immobilization on to robotic-dispensed nanobioactive glass/polycaprolactone scaffolds for bone tissue engineering. Biotechnol Lett 37, 935–942 (2015). https://doi.org/10.1007/s10529-014-1745-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1745-5

Keywords

Navigation