Skip to main content

Advertisement

Log in

Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The nitrite-dependent anaerobic methane oxidation (n-damo) mediated by “Candidatus Methylomirabilis oxyfera” connects the biogeochemical carbon and nitrogen cycles in a novel way. Many environments have been reported to harbor such organism being slow-growing and oxygen-sensitive anaerobes. Here, we focused on the population of n-damo bacteria in a fluctuating habitat being the wetland in the water level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in China. A molecular approach demonstrated positive amplifications when targeting the functional pmoA gene only in the lower sites which endured longer flooding time in an elevation gradient. Only 1 operational taxonomic unit (OTU) in the lower elevation zone targeting the 16S ribosomal RNA (rRNA) gene was clustering into the NC-10 group a, which is presumed to be the true n-damo group. Moreover, a relatively low level of diversity was observed in this study. The abundances were as low as 4.7 × 102 to 1.5 × 103 copies g−1 dry soil (ds) in the initial stage, which were almost the lowest reported. However, an increase was observed (3.2 × 103 to 5.3 × 104 copies g−1 ds) after nearly 6 months of flooding. Intriguingly, the abundance of n-damo bacteria correlated positively with the accumulated flooding time (AFT). The current study revealed that n-damo bacteria can be detected in a fluctuating environment and the sites with longer flooding time seem to be preferred habitats. The water flooding may be the principal factor in this ecosystem by creating anoxic condition. The wide range of such habitats suggests a high potential of n-damo bacteria to play a key role in natural CH4 consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56(6):1919–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bao S (2005) The method of the soil and agriculture chemical analysis [M]. China Agriculture Press, Beijing

    Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187. doi:10.1126/science.1169984

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623–626. doi:10.1038/35036572

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Jiang X-W, Gu J-D (2015a) Existence of novel phylotypes of nitrite-dependent anaerobic methane-oxidizing bacteria in surface and subsurface sediments of the South China Sea. Geomicrobiol J 32(1):1–10. doi:10.1080/01490451.2014.917742

    Article  Google Scholar 

  • Chen J, Zhou Z-C, Gu J-D (2014) Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 98(12):5685–5696. doi:10.1007/s00253-014-5733-4

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhou Z, Gu J-D (2015b) Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 99(3):1463–1473. doi:10.1007/s00253-014-6051-6

    Article  CAS  PubMed  Google Scholar 

  • China Three Gorges Corporation (2015) Introduction of Three Gorges Corporation (in Chinese). PUblisher. http://www.ctgpc.com.cn/sxgc/newsdetail2.php

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156(4):457–464. doi:10.1016/j.resmic.2005.01.011

    Article  CAS  PubMed  Google Scholar 

  • Deutzmann JS, Stief P, Brandes J, Schink B (2014) Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake. P Natl Acad Sci USA 111(51):18273–18278. doi:10.1073/pnas.1411617111

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, den Camp HJMO, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548. doi:10.1038/nature08883

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microb 75(11):3656–3662. doi:10.1128/Aem.00067-09

    Article  CAS  Google Scholar 

  • Hamady M, Lozupone C, Knight R (2009) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4(1):17–27. doi:10.1038/ismej.2009.97

    Article  PubMed Central  PubMed  Google Scholar 

  • Han P, Gu J-D (2013) A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches. Appl Microbiol Biotechnol 97(23):10155–10162. doi:10.1007/s00253-013-5260-8

    Article  CAS  PubMed  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567–570. doi:10.1038/nature12375

    Article  CAS  PubMed  Google Scholar 

  • Hu B-L, Shen L-D, Lian X, Zhu Q, Liu S, Huang Q, He Z-F, Geng S, Cheng D-Q, Lou L-P, Xu X-Y, Zheng P, He Y-F (2014a) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. P Natl Acad Sci USA 111(12):4495–4500. doi:10.1073/pnas.1318393111

    Article  CAS  Google Scholar 

  • Hu B, He Z, Geng S, Cai C, Lou L, Zheng P, Xu X (2014b) Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration. Appl Microbiol Biotechnol 98(18):7983–7991. doi:10.1007/s00253-014-5835-z

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Zeng RJ, Keller J, Lant PA, Yuan Z (2011) Effect of nitrate and nitrite on the selection of microorganisms in the denitrifying anaerobic methane oxidation process. Environ Microbiol Rep 3(3):315–319. doi:10.1111/j.1758-2229.2010.00227.x

    Article  CAS  PubMed  Google Scholar 

  • Joabsson A, Christensen TR, Wallén B (1999) Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14(10):385–388. doi:10.1016/S0169-5347(99)01649-3

    Article  PubMed  Google Scholar 

  • Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microb 64(8):3042–3051

    CAS  Google Scholar 

  • Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35(4):233–238. doi:10.1016/j.syapm.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  • Luesken FA, Zhu BL, van Alen TA, Butler MK, Diaz MR, Song B, den Camp HJMO, Jetten MSM, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microb 77(11):3877–3880. doi:10.1128/aem.02960-10

    Article  CAS  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491(7425):541–546. doi:10.1038/nature11656

    Article  CAS  PubMed  Google Scholar 

  • Norði K, Thamdrup B (2014) Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochim Cosmochim Acta 132:141–150. doi:10.1016/j.gca.2014.01.032

    Article  Google Scholar 

  • Qiu J (2009) Chinese dam may be a methane menace: wetlands around Three Gorges produce tonnes of the greenhouse gas. Nature. doi:10.1038/news.2009.962

    Google Scholar 

  • Raghoebarsing AA, Pol A, Van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JSS, den Camp HJO, Jetten MS (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921. doi:10.1038/nature04617

    Article  CAS  PubMed  Google Scholar 

  • Rudd JW, Hecky R, Harris R, Kelly C (1993) Are hydroelectric reservoirs significant sources of greenhouse gases ? Ambio 22:246–248

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75(23):7537–7541. doi:10.1128/aem.01541-09

    Article  CAS  Google Scholar 

  • Shen L-D, Wu H-S, Gao Z-Q (2015) Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Appl Microbiol Biotechnol 99(1):133–142. doi:10.1007/s00253-014-6200-y

    Article  CAS  PubMed  Google Scholar 

  • Shen L-D, Zhu Q, Liu S, Du P, Zeng J-N, Cheng D-Q, Xu X-Y, Zheng P, Hu B-L (2014a) Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China). Appl Microbiol Biotechnol 98(11):5029–5038. doi:10.1007/s00253-014-5556-3

    Article  CAS  Google Scholar 

  • Shen LD, Liu S, Zhu Q, Li XY, Cai C, Cheng DQ, Lou LP, Xu XY, Zheng P, Hu BL (2014b) Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microb Ecol 67(2):341–349. doi:10.1007/s00248-013-0330-0

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (2007) IPCC, 2007: climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change

  • St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50(9):766–775. doi:10.1641/0006-3568(2000)050[0766:rsasog]2.0.co;2

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thauer RK, Shima S (2008) Methane as fuel for anaerobic microorganisms. Ann N Y Acad Sci 1125(1):158–170. doi:10.1196/annals.1419.000

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Xiao S, Li Y, Zhong H, Li X, Peng F (2014) Methane formation and consumption processes in Xiangxi Bay of the Three Gorges Reservoir. Sci Rep 4. doi:10.1038/srep04449

  • Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MSM, Yin C, Op den Camp HJM (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336(2):79–88. doi:10.1111/j.1574-6968.2012.02654.x

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Liu D, Wang Y, Yang Z, Chen W (2013) Temporal variation of methane flux from Xiangxi Bay of the Three Gorges Reservoir. Sci Rep 3. doi:10.1038/srep02500

  • Zhou L, Wang Y, Long XE, Guo J, Zhu G (2014) High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett 360(1):33–41. doi:10.1111/1574-6968.12567

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microb 78(24):8657–8665. doi:10.1128/aem.02102-12

    Article  CAS  Google Scholar 

  • Zhu G, Jetten MM, Kuschk P, Ettwig K, Yin C (2010) Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Appl Microbiol Biotechnol 86(4):1043–1055. doi:10.1007/s00253-010-2451-4

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Zhou L, Wang Y, Wang S, Guo J, Long X-E, Sun X, Jiang B, Hou Q, Jetten MSM, Yin C (2015) Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ Microbiol Rep 7(1):128–138. doi:10.1111/1758-2229.12214

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (No. 41303053), Fundamental and Frontier Research Project of Chongqing (No. cstc2013jcyjA20003), West Light Foundation, and West China Action Plan of the Chinese Academy of Sciences (No. KZCX2-XB3-14-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjun Wu.

Ethics declarations

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, P., Ye, F. et al. Nitrite-dependent anaerobic methane oxidizing bacteria along the water level fluctuation zone of the Three Gorges Reservoir. Appl Microbiol Biotechnol 100, 1977–1986 (2016). https://doi.org/10.1007/s00253-015-7083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7083-2

Keywords

Navigation