Skip to main content
Log in

Functional characterization of the UDP-xylose biosynthesis pathway in Rhodothermus marinus

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

UDP-glucuronic acid dehydrogenase (UGD) and UDP-xylose synthase (UXS) are the two enzymes responsible for the biosynthesis of UDP-xylose from UDP-glucose. Several UGDs from bacterial sources, which oxidize UDP-glucose to glucuronic acid, have been found and functionally characterized whereas only few reports on bacterial UXS isoforms exist. Rhodothermus marinus, a halothermophilic bacterium commonly found in hot springs, proved to be a valuable source of carbohydrate active enzymes of biotechnological interest, such as xylanases, mannanases, and epimerases. However, no enzymes of R. marinus involved in the biosynthesis or modification of nucleotide sugars have been reported yet. Herein, we describe the cloning and characterization of two putative UGD (RmUGD1 and RmUGD2) and one UXS (RmUXS) isoform from this organism. All three enzymes could be expressed in recombinant form and purified to near homogeneity. UPLC- and NMR-based activity tests showed that RmUGD1 and RmUXS are indeed active enzymes, whereas no enzymatic activity could be detected by RmUGD2. Both RmUGD1 and RmUXS showed a temperature optimum of 60 °C, with almost no loss of activity after 1 h exposure at 70 °C. No metal ions were required for enzymatic activities. Zn2+ ions strongly inhibited both enzymes. RmUGD1 showed higher salt tolerance and had a higher pH optimum than RmUXS. Furthermore, RmUGD1 was inhibited by UDP-xylose at higher concentrations. By coupling recombinant RmUXS and RmUGD1, UDP-xylose could be successfully synthesized directly from UDP-glucose. The high activity of the herein described enzymes make RmUGD1 and RmUXS the first thermo-tolerant biocatalysts for the synthesis of UDP-glucuronic acid and UDP-xylose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou HM, Karlsson EN, Bartonek-Roxa E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson M, Holst O (2000) Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 345:53–60

    Article  Google Scholar 

  • Alfredsson G, Kristjansson JK, Hjorleifsdottir S, Stetter KO (1988) Rhodothermus marinus, gen. nov., sp. nov. a thermophilic, halophilic bacterium from submarine hot springs in Iceland. J Gen Microbiol 134(2):299–306

  • Balduini C, Brovelli A, Castellani AA (1970) Biosynthesis of glycosaminoglycans in bovine cornea. The effect of uridine diphosphate xylose. Biochem J 120:719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Peled M, Griffith CL, Doering TL (2001) Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. PNAS 98(21):12003–12008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Peled M, O'Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155

    Article  CAS  PubMed  Google Scholar 

  • Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, Thorbjarnardottir SH, Kristjansson JK (2006) Rhodothermus marinus: physiology and molecular biology. Extremophiles 10(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Breazeale SD, Ribeiro AA, McClerren AL, Raetz CRH (2005) A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid a with 4-amino-4-deoxy-L-arabinose: identification and function of UDP-4-deoxy-4-formamido-L-arabinose. J Biol Chem 280(14):14154–14167

    Article  CAS  PubMed  Google Scholar 

  • Breazeale SD, Ribeiro AA, Raetz CR (2002) Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli: origin of lipid a species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem 277(4):2886–2896

    Article  CAS  PubMed  Google Scholar 

  • Cai ZP, Hagan AK, Wang MM, Flitsch SL, Liu L, Voglmeir J (2014) 2-Pyridylfuran: a new fluorescent tag for the analysis of carbohydrates. Anal Chem 86(10): 5179-5186

  • Campbell RE, Sala RF, van de Rijn IV, Tanner ME (1997) Properties and kinetic analysis of UDP-glucose dehydrogenase from group A Streptococci: irreversible inhibition by UDP-chloroacetol. J Biol Chem 272(6):3416–3422

    Article  CAS  PubMed  Google Scholar 

  • Coyne MJ, Fletcher CM, Reinap B, Comstock LE (2011) UDP-glucuronic acid decarboxylases of Bacteroides fragilis and their prevalence in bacteria. J Bacteriol 193(19):5252–5259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger S, Chaikuad A, Kavanagh K, Oppermann U, Nidetzky B (2010) UDP-glucose dehydrogenase: structure and function of a potential drug target. Biochem Soc Trans 38(5):1378–1385

    Article  CAS  PubMed  Google Scholar 

  • Egger S, Chaikuad A, Kavanagh KL, Oppermann U, Nidetzky B (2011) Structure and mechanism of human UDP-glucose 6-dehydrogenase. J Biol Chem 286(27):23877–23887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eixelsberger T, Sykora S, Egger S, Brunsteiner M, Kavanagh KL, Oppermann U, Brecker L, Nidetzky B (2012) Structure and Mechanism of Human UDP-xylose Synthase: evidence for a promoting role of sugar ring distortion in a three-step catalytic conversion of UDP-glucuronic acid. J Biol Chem 287(37):31349–31358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher CM, Coyne MJ, Bentley DL, Villa OF, Comstock LE (2007) Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem. PNAS 104(7):2413–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainey PA, Phelps CF (1972) Uridine diphosphate glucuronic acid production and utilization in various tissues actively synthesizing glycosaminoglycans. Biochem J 128:215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith CL, Klutts JS, Zhang L, Levery SB, Doering TL (2004) UDP-glucose dehydrogenase plays multiple roles in the biology of the pathogenic fungus Cryptococcus neoformans. J Biol Chem 279(49):51669–51676

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Glushka J, Yin Y, Xu Y, Denny T, Smith J, Jiang Y, Bar-Peled M (2010) Identification of a bifunctional UDP-4-keto-pentose/UDP-xylose synthase in the plant pathogenic bacterium Ralstonia solanacearum strain GMI1000, a distinct member of the 4, 6-dehydratase and decarboxylase family. J Biol Chem 285(12):9030–9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu X, Lee SG, Bar-Peled M (2011) Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase. Microbiology 157(1):260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130(4):2188–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi T, Koyama T, Matsuda K (1988) Formation of UDP-xylose and xyloglucan in soybean golgi membranes. Plant Physiol 87:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinterberg B, Klos C, Tenhaken R (2002) Recombinant UDP-glucose dehydrogenase from soybean. Plant Physiol Biochem 40(12):1011–1017

    Article  CAS  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl Environ Microbiol 62(8):3047–3049

    CAS  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67(1):609–652

    Article  CAS  PubMed  Google Scholar 

  • Klein G, Müller-Loennies S, Lindner B, Kobylak N, Brade H, Raina S (2013) Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: Incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J Biol Chem 288(12):8111–8127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinghammer M, Tenhaken R (2007) Genome-wide analysis of the UDP-glucose dehydrogenase gene family in Arabidopsis, a key enzyme for matrix polysaccharides in cell walls. J Exp Bot 58(13):3609–3621

    Article  CAS  PubMed  Google Scholar 

  • Knirel YA (1990) Polysaccharide antigens of Pseudomonas aeruginosa. Crit Rev Microbiol 17(4):273–304

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Spicer AP (2000) Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 12(5):581–586

    Article  CAS  PubMed  Google Scholar 

  • Loutet SA, Bartholdson SJ, Govan JRW, Campopiano DJ, Valvano MA (2009) Contributions of two UDP-glucose dehydrogenases to viability and polymyxin B resistance of Burkholderia cenocepacia. Microbiology 155(6):2029–2039

    Article  CAS  PubMed  Google Scholar 

  • Mahuku G (2004) A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Mol Biol Report 22(1):71–81

    Article  CAS  Google Scholar 

  • Moyrand F, Klaproth B, Himmelreich U, Dromer F, Janbon G (2002) Isolation and characterization of capsule structure mutant strains of Cryptococcus neoformans. Mol Microbiol 45(3):837–849

    Article  CAS  PubMed  Google Scholar 

  • Nolan M, Tindall BJ, Pomrenke H, Lapidus A, Copeland A, Glavina Del Rio T, Lucas S, Chen F, Tice H, Cheng JF, Saunders E, Han C, Bruce D, Goodwin L, Chain P, Pitluck S, Ovchinikova G, Pati A, Ivanova N, Mavromatis K, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brettin T, Göker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC (2009) Complete genome sequence of Rhodothermus marinus type strain (R-10). Stand Genomic Sci 29(3):283–290

    Article  Google Scholar 

  • Nummila K, Kilpeläinen I, Zähringer U, Vaara M, Helander IM (1995) Lipopolysaccharides of polymyxin B‐resistant mutants of Escherichia coli are extensively substituted by 2‐aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 16(2):271–278

    Article  CAS  PubMed  Google Scholar 

  • Pattathil S, Harper A, Bar-Peled M (2005) Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221(4):538–548

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  PubMed  Google Scholar 

  • Reiss E, Huppert M, Cherniak R (1985) Characterization of protein and mannan polysaccharide antigens of yeasts, moulds, and actinomycetes. Curr Top Med Mycol Springer 172-207

  • Rocha J, Popescu AO, Borges P, Mil-Homens D, Moreira LM, Sá-Correia I, Fialho AM, Frazão C (2011) Structure of Burkholderia cepacia UDP-glucose dehydrogenase (UGD) BceC and role of Tyr10 in final hydrolysis of UGD thioester intermediate. J Bacteriol 193(15):3978–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha J, Popescu AO, Sa-Correia I, Fialho AM, Frazao C (2010) Cloning, expression, purification, crystallization and preliminary crystallographic studies of BceC, a UDP-glucose dehydrogenase from Burkholderia cepacia IST408. Acta Crystallogr F 66(3):269–271

    Article  CAS  Google Scholar 

  • Rosenberger AFN, Hangelmann L, Hofinger A, Wilson IBH (2012) UDP-xylose and UDP-galactose synthesis in Trichomonas vaginalis. Mol Biochem Parasitol 181(1-2):53–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandermann H Jr, Grisebach H (1970) Biosynthesis of D-apiose V. NAD+-dependent biosynthesis of UDP-apiose and UDP-xylose from UDP-D-glucuronic acid with an enzyme preparation from Lemna minor L. Biochim Biophys Acta 208(2):173–180

    Article  CAS  PubMed  Google Scholar 

  • Satomura T, Kusumi K, Ohshima T, Sakuraba H (2011) Identification and characterization of UDP-glucose dehydrogenase from the hyperthermophilic archaon, Pyrobaculum islandicum. Biosci Biotechnol Biochem 75(10): 2049-2051

  • Shashkov AS, Arbatsky NP, Cedzynski M, Kaca W, Knirel YA (1999) Structure of an acidic O-specific polysaccharide of Proteus mirabilis O5. Carbohydr Res 319(1–4):199–203

    Article  CAS  PubMed  Google Scholar 

  • Sommer BJ, Barycki JJ, Simpson MA (2004) Characterization of human UDP-glucose dehydrogenase. J Biol Chem 279(22):23590–23596

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Yuanchao Wang for access to the Bruker Ultraflex MALDI–TOF mass spectrometer and Dr. Ting Wang for her comments on an earlier version of this manuscript. This work was supported by the NJAU Academian- and Departmental Startup Initiative (to both to L.L. and J.V.) and the 100 Foreign Talents Plan (grant number JSB2014012 to J.V.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Liu or Josef Voglmeir.

Additional information

Xu C. Duan and Ai M. Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 19112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X.C., Lu, A.M., Gu, B. et al. Functional characterization of the UDP-xylose biosynthesis pathway in Rhodothermus marinus . Appl Microbiol Biotechnol 99, 9463–9472 (2015). https://doi.org/10.1007/s00253-015-6683-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6683-1

Keywords

Navigation