Skip to main content
Log in

Scintigraphic evaluation of therapeutic angiogenesis induced by VEGF-loaded chitosan nanoparticles in a rodent model of hindlimb ischemia

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We examined the therapeutic effect of chitosan nanoparticles (CHI) incorporating vascular endothelial growth factor (VEGF) on hindlimb ischemia using single photon emission computed tomography (SPECT) perfusion imaging. Rats (n=24) were divided randomly into four groups of six: control, VEGF, CHI, and CHI incorporated with VEGF (CHI-VEGF). The right femoral artery was ligated to block blood flow, and SPECT perfusion images were obtained every week for 4 weeks. The morphology of the synthesized CHI was identified as a spherical shape with an even size distribution (range, 93–250 nm). The VEGF loading efficiency in CHI was 8.6±2.1%. Upon injection into the femoral artery, 17.6±8.2% of the 99mTc-labeled CHI-VEGF administered remained in the ischemic lesion. The restoration of blood flow (ratio of ischemia to normal) measured by SPECT perfusion imaging was greater in animals treated with CHI-VEGF compared to that in the control (p=0.028), VEGF (p=0.010), and CHI (p=0.011) groups. Administering CHI-VEGF had a significant therapeutic effect in a hindlimb ischemic rat model. 99mTc gamma perfusion imaging was useful to study therapeutic angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Creager, J. A. Kaufman, and M. S. Conte, N. Engl. J. Med., 366, 2198 (2012).

    Article  CAS  Google Scholar 

  2. K. Ouriel, C. K. Shortell, J. A. DeWeese, R. M. Green, C. W. Francis, M. V. Azodo, O. H. Gutierrez, J. V. Manzione, C. Cox, and V. J. Marder, J. Vasc. Surg., 19, 1021 (1994).

    Article  CAS  Google Scholar 

  3. J. Ruef, M. Hofmann, and J. Haase, J. Interv. Cardiol., 17, 427 (2004).

    Article  Google Scholar 

  4. H. Al Sabti, J. Cardiothorac. Surg., 2, 49 (2007).

    Article  Google Scholar 

  5. F. Biscetti, G. Straface, V. Arena, E. Stigliano, G. Pecorini, and P. Rizzo, Cardiovasc. Diabetol., 8, 49 (2009).

    Article  Google Scholar 

  6. E. Wahlberg, J. Vasc. Surg., 38, 198 (2003).

    Article  Google Scholar 

  7. D. Mikroulis, N. Papanas, E. Maltezos, and G. Bougioukas, Curr. Vasc. Pharmacol., 5, 195 (2007).

    Article  CAS  Google Scholar 

  8. F. Biscetti, G. Straface, V. Arena, E. Stigliano, G. Pecorini, and P. Rizzo, Cardiovasc. Diabetol., 8, 49 (2009).

    Article  Google Scholar 

  9. S. H. Ahn, S. I. Min, S. Y. Kin, S. K. Min, H. K. Yang, S. J. Kim, and J. Ha, J. Korean Surg. Soc., 79, 294 (2010).

    Article  Google Scholar 

  10. K. Nagpal, S. K. Singh, and D. N. Mishra, Chem. Pharm. Bull., 58, 1423 (2010).

    Article  CAS  Google Scholar 

  11. C. M. Lee, J. I. Kwon, T. K. Lee, S. T. Lim, M. H. Sohn, and H. J. Jeong, ACS Macro Lett., 3, 1126 (2014).

    Article  CAS  Google Scholar 

  12. T. K. Giri, A. Thakur, A. Alexander Ajazuddin, H. Badwaik, and D. K. Tripathi, Acta Pharm. Sin. B, 2, 439 (2012).

    Article  CAS  Google Scholar 

  13. N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Deliv. Rev., 62, 83 (2010).

    Article  CAS  Google Scholar 

  14. Y. Ding, S. Z. Shen, H. Sun, K. Sun, F. Liu, Y. Qi, and J. Yan, Mater. Sci. Eng. C Mater. Biol. Appl., 48, 487 (2015).

    Article  CAS  Google Scholar 

  15. H. Y. Zhou, L. J. Jiang, P. P. Cao, J. B. Li, and X. G. Chen, Carbohydr. Polym., 117, 524 (2015).

    Article  CAS  Google Scholar 

  16. J. J. Wang, Z. W. Zeng, R. Z. Xiao, T. Xie, G. L. Zhou, X. R. Zhan, and S. L. Wang, Int. J. Nanomedicine, 6, 765 (2011).

    CAS  Google Scholar 

  17. V. Darras, M. Nelea, F. M. Winnik, and M. D. Buschmann, Carbohydr. Polym., 80, 1137 (2010).

    Article  CAS  Google Scholar 

  18. H. Jonassen, A. L. Kjoniksen, and M. Hiorth, Biomacromolecules, 13, 3747 (2012).

    Article  CAS  Google Scholar 

  19. A. Nasti, N. M. Zaki, P. de Leonardis, S. Ungphaiboon, P. Sansongsak, M. G. Rimoli, and N. Tirelli, Pharm. Res., 26, 1918 (2009).

    Article  CAS  Google Scholar 

  20. Y. H. Bae and K. Park, J. Control. Release, 153, 198 (2011).

    Article  CAS  Google Scholar 

  21. J. Kim, L. Cao, D. Shvartsman, E. A. Silva, and D. J. Mooney, Nano Lett., 11, 694 (2011).

    Article  CAS  Google Scholar 

  22. H. Hwang, J. Kwon, P. S. Oh, T. K. Lee, K. S. Na, C. M. Lee, H. S. Jeong, S. T. Lim, M. H. Sohn, and H. J. Jeong, Radiology, 273, 160 (2014).

    Article  Google Scholar 

  23. A. O. Dokun, S. Keum, S. Hazarika, Y. Li, G. M. Lamonte, F. Wheeler, D. A. Marchuk, and B. H. Annex, Circulation, 117, 1207 (2008).

    Article  CAS  Google Scholar 

  24. N. Kang, Y. Hai, F. Liang, C. J. Gao, and X. H. Liu, Mol. Med. Rep., 9, 2124 (2014).

    CAS  Google Scholar 

  25. R. A. Brenes, C. C. Jadlowiec, M. Bear, P. Hashim, C. D. Protack, and X. Li, J. Vasc. Surg., 56, 1669 (2012).

    Article  Google Scholar 

  26. C. Y. Wang, M. S. Wen, H. W. Wang, I. C. Hsieh, Y. Li, and P. Y. Liu, Circulation, 118, 2166 (2008).

    Article  CAS  Google Scholar 

  27. J. C. Hershey, E. P. Baskin, H. A. Corcoran, A. Bett, N. M. Dougherty, D. B. Gilberto, X. Mao, K. A. Thomas, and J. J. Cook, Heart Vessels, 18, 142 (2003).

    Article  Google Scholar 

  28. J. Duan, T. Murohara, H. Ikeda, A. Katoh, S. Shintani, K. Sasaki, H. Kawata, N. Yamamoto, and T. Imaizumi, Circulation, 102, 370 (2000).

    Article  Google Scholar 

  29. A. Iskandrian, F. Hage, L. Shaw, J. Mahmarian, and D. Berman, JACC Cardiovasc. Imaging, 7, 79 (2014).

    Article  Google Scholar 

  30. Y. W. Bahk, Nucl. Med. Mol. Imaging, 44, 1 (2010).

    Article  Google Scholar 

  31. A. Zhu and H. S. Shim, Nucl. Med. Mol. Imaging, 45, 1 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Jeong Jeong.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.K., Lee, CM., Hwang, H. et al. Scintigraphic evaluation of therapeutic angiogenesis induced by VEGF-loaded chitosan nanoparticles in a rodent model of hindlimb ischemia. Macromol. Res. 23, 531–536 (2015). https://doi.org/10.1007/s13233-015-3075-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3075-4

Keywords

Navigation