Skip to main content
Log in

A new BiVO4/Li0.5Sm0.5WO4 ultra-low firing high-k microwave dielectric ceramic

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dense ceramic samples in the (1−x) BiVO4xLi0.5Sm0.5WO4 (0.05 ≤ x ≤ 0.1) system are prepared using the solid-state reaction process. A single solid–solution phase with monoclinic structure formed through the entire compositions and the unit cell volume increases linearly with x. When x = 0.07, the composition of 0.93BiVO4–0.07 Li0.5Sm0.5WO4 readily sintered at 750 °C has excellent microwave properties with a high permittivity of 73.9, and a Q × f value of 9054 GHz and a near-zero temperature coefficient of −1.61 ppm/°C. The ceramics have applications for microwave devices requiring ultra-low sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou D, Randall CA, Wang H, Pang LX, Yao X (2010) Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1−x][MoxV1−x]O4 microwave dielectric ceramics. J Am Ceram Soc 93:2147

    Article  Google Scholar 

  2. Abdel Aziz DA, Sterianou I, Reaney IM (2009) (1−x)CaTiO3−x(Li0.5Nd0.5)TiO3 for ultra-small dielectrically loaded antennas. J Mater Sci 44:6247. doi:10.1007/s10853-009-3853-5

    Article  Google Scholar 

  3. Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mat Rev 53:57

    Article  Google Scholar 

  4. Sebastian MT (2008) Dielectric materials for wireless communications. Elseiver, Oxford

    Google Scholar 

  5. Zheng H, Gyo¨rgyfalva GCD, Reaney IM (2005) Microstructure and microwave properties of CaTiO3–LaGaO3 solid solutions. J Mater Sci 40:5207. doi:10.1007/s10853-005-4414-1

    Article  Google Scholar 

  6. Li M, Feteira A, Mirsaneh M, Lee S, Lanagan MT, Randall CA, Sinclair DC (2010) Influence of nonstoichiometry on extrinsic electrical conduction and microwave dielectric loss of BaCo1/3Nb2/3O3 ceramics. J Am Ceram Soc 93:4087

    Article  Google Scholar 

  7. Chen XM, Li Y (2002) A and B site co-substituted Ba6−3xSm8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 85:579

    Article  Google Scholar 

  8. Chen GH, Di JC, Xu HR, Jiang MH, Yuan CL (2012) Low loss and middle permittivity of (1 − x) Ca4La2Ti5O17–xNdAlO3 dielectric resonators with near-zero temperature coefficient of the resonant frequency. J Mater Sci 47:2271. doi:10.1007/s10853-011-6039-x

    Article  Google Scholar 

  9. Wee SH, Kim DW, Yoo SI (2004) Microwave dielectric properties of low-fired ZnNb2O6 ceramics with BiVO4 addition. J Am Ceram Soc 87:871

    Article  Google Scholar 

  10. Yang H, Lin Y, Zhu J, Wang F, Dai ZH (2010) A new Li0.5Sm0.5WO4 low temperature firing microwave dielectric ceramic. J Alloys Compd 502:L20

    Article  Google Scholar 

  11. Zhou D, Pang LX, Wang H, Guo J, Yao X, Randall CA (2011) Phase transition, Raman spectra, infrared spectra, band gap and microwave dielectric properties of low temperature firing (Na0.5xBi1−0.5x)(MoxV1−x)O4 solid solution ceramics with scheelite structures. J Mater Chem 21:18412

    Article  Google Scholar 

  12. Zhou D, Qu WG, Randall CA, Pang LX, Wang H, Wu XG, Guo J, Zhang GQ, Shui L, Wang QP, Liu HC, Yao X (2011) Ferroelastic phase transition compositional dependence for solid-solution [(Li0.5Bi0.5) x Bi1−x ][Mo x V1−x ]O4 scheelite-structured microwave dielectric ceramics. Acta Mater 59:1502

    Article  Google Scholar 

  13. Zhou D, Pang LX, Guo J, Wang H, Yao X, Randall C (2011) Phase transition, Raman spectra, Infrared spectra, and microwave dielectric properties of low temperature firing (K0.5xBi1–0.5x)(MoxV1–x)O4 ceramics with scheelite related structure. Inor Chem 50:12733

    Article  Google Scholar 

  14. Courtney WE (1970) Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans Micro Theory Tech 18:476

    Article  Google Scholar 

  15. Shannon RD, Prewitt CT (1969) Effective ion radii in oxides and fluorides. Acta Cryst B 25:925

    Article  Google Scholar 

  16. Bijumon PV, Sebastian MT, Mohanan P (2005) Experimental investigations and three-dimensional transmission line matrix simulation of Ca5−xAxB2TiO12 (A = Mg, Zn, Ni, and Co; B = Nb and Ta) ceramic resonators. J Appl Phys 98:125105

    Article  Google Scholar 

  17. Shannon RD (1993) Dielectric polarizabilities of ions in oxides and fluorides. J Appl Phys 73:348

    Article  Google Scholar 

  18. Liu HX, Tian ZQ, Wang H, Yu HT, Ouyang SX (2004) New microwave dielectric ceramics with near-zero τf in the Ba(Mg1/3Nb2/3)O3-Ba(Ni1/3Nb2/3)O3 system. J Mater Sci 39:4319. doi:10.1023/B:JMSC.0000033416.63511.d8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research funds of The Guangxi Key Laboratory of Information Materials (Nos. 1210908-05-Z, 131018-Z and 131004-Z) and the Research funds of Guangxi Experiment Center of Information Science (No. 20130115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Ff., Chen, Gh., Kang, Xl. et al. A new BiVO4/Li0.5Sm0.5WO4 ultra-low firing high-k microwave dielectric ceramic. J Mater Sci 50, 1295–1299 (2015). https://doi.org/10.1007/s10853-014-8688-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8688-z

Keywords

Navigation