Skip to main content
Log in

Neuregulin-1 Increases Connexin-40 and Connexin-45 Expression in Embryonic Stem Cell-Derived Cardiomyocytes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Neuregulin-1 (NRG-1) is a vital factor involved in heart development. NRG-1 up-regulated connexin-40 (Cx40) in mice fetal cardiomyocytes has been reported, while the effect of NRG-1 on expression of connexins in embryonic stem cells-derived cardiomyocytes (ESCMs) is limited studied. The process of cardiomyocytes differentiated from embryonic stem cells with or without NRG-1 treatment was observed continuously. Exposure to NRG-1 increased the expression of Cx40 and connexin-45 (Cx45) in ESCMs, while the expression of connexin-43 was unchanged regardless of NRG-1 treatment Western blot analysis also confirmed that the expression of Cx40 and Cx45 in the beating foci was increased in the presence of NRG-1. These results indicate that connexins are differentially regulated by exogenous NRG-1 during cardiomyocytic differentiation of embryonic stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oyamada, M., Takebe, K., Endo, A., Hara, S., & Oyamada, Y. (2013). Connexin expression and gap-junctional intercellular communication in ES cells and iPS cells. Frontiers in Pharmacology, 4, 85.

    Article  CAS  Google Scholar 

  2. Oyamada, M., Oyamada, Y., & Takamatsu, T. (2005). Regulation of connexin expression. Biochimica et Biophysica Acta, 1719(1–2), 6–23.

    Article  CAS  Google Scholar 

  3. Salameh, A., Blanke, K., & Daehnert, I. (2013). Role of connexins in human congenital heart disease: the chicken and egg problem. Frontiers in Pharmacology, 4, 70.

    Google Scholar 

  4. Severs, N. J., Dupont, E., Thomas, N., Kaba, R., Rothery, S., Jain, R., Sharpey, K., & Fry, C. H. (2006). Alterations in cardiac connexin expression in cardiomyopathies. Advances in Cardiology, 42, 228–242.

    Article  CAS  Google Scholar 

  5. Severs, N. J., Bruce, A. F., Dupont, E., & Rothery, S. (2008). Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovascular Research, 80(1), 9–19.

    Article  CAS  Google Scholar 

  6. Davis, L. M., Rodefeld, M. E., Green, K., Beyer, E. C., & Saffitz, J. E. (1995). Gap junction protein phenotypes of the human heart and conduction system. Journal of Cardiovascular Electrophysiology, 6(10 Pt 1), 813–822.

    Article  CAS  Google Scholar 

  7. Oyamada, Y., Komatsu, K., Kimura, H., Mori, M., & Oyamada, M. (1996). Differential regulation of gap junction protein (connexin) genes during cardiomyocytic differentiation of mouse embryonic stem cells in vitro. Experimental Cell Research, 229(2), 318–326.

    Article  CAS  Google Scholar 

  8. Kanter, H. L., Saffitz, J. E., & Beyer, E. C. (1992). Cardiac myocytes express multiple gap junction proteins. Circulation Research, 70(2), 438–444.

    Article  CAS  Google Scholar 

  9. Oyamada, M., Takebe, K., & Oyamada, Y. (2013). Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochimica et Biophysica Acta, 1828, 118–133.

    Article  CAS  Google Scholar 

  10. Garratt, A. N. (2006). "To erb-B or not to erb-B…" Neuregulin-1/ErbB signaling in heart development and function. Journal of Molecular and Cellular Cardiology, 41, 215–218.

    Article  CAS  Google Scholar 

  11. Pentassuglia, L., & Sawyer, D. B. (2009). The role of Neuregulin-1beta/ErbB signaling in the heart. Experimental Cell Research, 315(4), 627–637.

    Article  CAS  Google Scholar 

  12. Odiete, O., Hill, M. F., & Sawyer, D. B. (2012). Neuregulin in cardiovascular development and disease. Circulation Research, 111(10), 1376–1385.

    Article  CAS  Google Scholar 

  13. Ruhparwar, A., Er, F., Martin, U., Radke, K., Gruh, I., Niehaus, M., Karck, M., Haverich, A., & Hoppe, U. C. (2007). Enrichment of cardiac pacemaker-like cells: neuregulin-1 and cyclic AMP increase I(f)-current density and connexin 40 mRNA levels in fetal cardiomyocytes. Medical and Biological Engineering and Computing, 45(2), 221–227.

    Article  Google Scholar 

  14. Alex, J., Cale, A. R. J., Cowen, M. E., Griffin, S. C., & Guvendik, L. (2005). Connexins: the basis of functional coupling of myocytes. J Clin Basic Cardiol, 8(1–4), 19–22.

    CAS  Google Scholar 

  15. Sachinidis, A., Fleischmann, B. K., Kolossov, E., Wartenberg, M., Sauer, H., & Hescheler, J. (2003). Cardiac specific differentiation of mouse embryonic stem cells. Cardiovascular Research, 58(2), 278–291.

    Article  CAS  Google Scholar 

  16. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93(1), 32–39.

    Article  CAS  Google Scholar 

  17. Miquerol, L., Dupays, L., Théveniau-Ruissy, M., Alcoléa, S., Jarry-Guichard, T., Abran, P., & Gros, D. (2003). Gap junctional connexins in the developing mouse cardiac conduction system. Novartis Foundation Symposium, 250, 80–98.

    Article  CAS  Google Scholar 

  18. Coppen, S. R., Kaba, R. A., Halliday, D., Dupont, E., Skepper, J. N., Elneil, S., & Severs, N. J. (2003). Comparison of connexin expression patterns in the developing mouse heart and human fetal heart. Molecular and Cellular Biochemistry, 242(1–2), 121–127.

    Article  CAS  Google Scholar 

  19. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., & Wobus, A. M. (2002). Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research, 91(3), 189–201.

    Article  CAS  Google Scholar 

  20. Czyz, J., Guan, K., Zeng, Q., & Wobus, A. M. (2005). Loss of beta 1 integrin function results in upregulation of connexin expression in embryonic stem cell-derived cardiomyocytes. International Journal of Developmental Biology, 49(1), 33–41.

    Article  CAS  Google Scholar 

  21. Kim, H. S., Cho, J. W., Hidaka, K., & Morisaki, T. (2007). Activation of MEK-ERK by heregulin-beta1 promotes the development of cardiomyocytes derived from ES cells. Biochemical and Biophysical Research Communications, 361, 732–738.

    Article  CAS  Google Scholar 

  22. Rentschler, S., Zander, J., Meyers, K., France, D., Levine, R., Porter, G., Rivkees, S. A., Morley, G. E., & Fishman, G. I. (2002). Neuregulin-1 promotes formation of the murine cardiac conduction system. Proceedings of the National Academy of Sciences of the United States of America, 99, 10464–10469.

    Article  CAS  Google Scholar 

  23. Patel, R., & Kos, L. (2005). Endothelin-1 and Neuregulin-1 convert embryonic cardiomyocytes into cells of the conduction system in the mouse. Developmental Dynamics, 233(1), 20–28.

    Article  CAS  Google Scholar 

  24. Wadugu, B., & Kühn, B. (2012). The role of neuregulin/ErbB2/ErbB4 signaling in the heart with special focus on effects on cardiomyocyte proliferation. American Journal of Physiology. Heart and Circulatory Physiology, 302(11), H2139–H2147.

    Article  CAS  Google Scholar 

  25. Mendes-Ferreira, P., De Keulenaer, G. W., Leite-Moreira, A. F., & Brás-Silva, C. (2013). Therapeutic potential of neuregulin-1 in cardiovascular disease. Drug Discovery Today, 18(17-18), 836–842.

    Article  CAS  Google Scholar 

  26. Chen, M., Bi, L. L., Wang, Z. Q., Zhao, F., Gan, X. D., & Wang, Y. G. (2013). Time-dependent regulation of neuregulin-1β/ErbB/ERK pathways in cardiac differentiation of mouse embryonic stem cells. Molecular and Cellular Biochemistry, 380(1–2), 67–72.

    Article  CAS  Google Scholar 

  27. Ieguchi, K., Fujita, M., Ma, Z., Davari, P., Taniguchi, Y., Sekiguchi, K., Wang, B., Takada, Y. K., & Takada, Y. (2010). Direct binding of the EGF-like domain of neuregulin-1 to integrins ({alpha}v{beta}3 and {alpha}6{beta}4) is involved in neuregulin-1/ErbB signaling. Journal of Biological Chemistry, 285(41), 31388–31398.

    Article  CAS  Google Scholar 

  28. Gassanov, N., Er, F., Zagidullin, N., & Hoppe, U. C. (2004). Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB Journal, 18(14), 1710–1712.

    CAS  Google Scholar 

  29. Zhu, W. Z., Xie, Y., Moyes, K. W., Gold, J. D., Askari, B., & Laflamma, M. A. (2010). Neugulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circulation Research, 107(6), 776–786.

    Article  CAS  Google Scholar 

  30. Ripplinger, C. M., & Bers, D. M. (2012). Human biological pacemakers: intrinsic variability and stability. Circulation, 125(7), 856–858.

    Article  Google Scholar 

  31. Xue, T., Cho, H. C., Akar, F. G., Tsang, S. Y., Jones, S. P., Marbán, E., Tomaselli, G. F., & Li, R. A. (2004). Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation, 111(1), 11–20.

    Article  Google Scholar 

  32. Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., & Gepstein, L. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22(10), 1282–1289.

    Article  CAS  Google Scholar 

  33. Shiba, Y., Fernandes, S., Zhu, W. Z., Filice, D., Muskheli, V., Kim, J., Palpant, N. J., Gantz, J., Moyes, K. W., Reinecke, H., Van Biber, B., Dardas, T., Mignone, J. L., Izawa, A., Hanna, R., Viswanathan, M., Gold, J. D., Kotlikoff, M. I., Sarvazyan, N., Kay, M. W., Murry, C. E., & Laflamme, M. A. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.

    Article  CAS  Google Scholar 

  34. Sankova, B., Benes, J., Jr., Krejci, E., Dupays, L., Theveniau-Ruissy, M., Miquerol, L., & Sedmera, D. (2012). The effect of connexin40 deficiency on ventricular conduction system function during development. Cardiovascular Research, 95(4), 469–479.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, J. Neuregulin-1 Increases Connexin-40 and Connexin-45 Expression in Embryonic Stem Cell-Derived Cardiomyocytes. Appl Biochem Biotechnol 174, 483–493 (2014). https://doi.org/10.1007/s12010-014-1089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1089-6

Keywords

Navigation