Skip to main content
Log in

Injectable in situ forming chitosan-based hydrogels for curcumin delivery

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this paper, a series of injectable in situ forming chitosan-based hydrogels were prepared by chemical crosslinking of chitosan and genipin with the cooperation of ionic bonds between chitosan and sodium salts at room temperature. Four hydrogels (A, B, C, and D) were obtained by mixing chitosan, genipin and a sodium salt of trisodium phosphate (Na3PO4·12H2O), sodium sulfate (Na2SO4), sodium sulfite (Na2SO3), or sodium bicarbonate (NaHCO3) and examined for their characteristics, morphology, and rheological properties. Their cell viability assays exhibited low toxicity and the localized in situ gel formation was detected after subcutaneous injections in rat. Curcumin which possesses many pharmaceutical potentials but has low bioavailability, was chosen as a drug model. In vitro curcumin release profiles exhibit sustained release properties with initial burst release for all hydrogels with about 3 to 6 times higher cumulative release than other gel controls. The results of this study demonstrate that our hydrogels have a potential as local curcumin carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Annabi, A. Tamayol, J. A. Uquillas, M. Akbar, L. E. Bertassoni, C. Cha, G. Camci-Unal, M. R. Dokmeci, N. A. Peppas, and A. Khademhosseini, Adv. Mater., 26, 85 (2014).

    Article  CAS  Google Scholar 

  2. F. Croisier and C. Jérôme, Eur. Polym. J., 49, 780 (2013).

    Article  CAS  Google Scholar 

  3. A. S. Hoffman, Adv. Drug Deliv. Rev., 64, 18 (2012).

    Article  Google Scholar 

  4. J. B. Wolinsky, Y. L. Colson, and M. W. Grinstaff, J. Control. Release, 159, 14 (2012).

    Article  CAS  Google Scholar 

  5. N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Deliv. Rev., 62, 83 (2010).

    Article  CAS  Google Scholar 

  6. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).

    Article  CAS  Google Scholar 

  7. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000).

    Article  CAS  Google Scholar 

  8. W. E. Hennink and C. F. van Nostrum, Adv. Drug Deliv. Rev., 54, 13 (2002).

    Article  CAS  Google Scholar 

  9. D. P. Speer, M. Chvapil, C. D. Eskelson, and J. Ulreich, J. Biomed. Mater. Res. A, 14, 753 (1980).

    Article  CAS  Google Scholar 

  10. A. Chenite, C. Chaput, D. Wang, C. Combes, M. D. Buschmann, C. D. Hoemann, J. C. Leroux, B. L. Atkinson, F. Binette, and A. Selmani, Biomaterials, 21, 2155 (2000).

    Article  CAS  Google Scholar 

  11. E. Ruel-Gariépy, A. Chenite, C. Chaput, S. Guirguis, and J.-C. Leroux, Int. J. Pharm., 203, 89 (2000).

    Article  Google Scholar 

  12. M. J. Moura, H. Faneca, M. P. Lima, M. H. Gil, and M. M. Figueiredo, Biomacromolecules, 12, 3275 (2011).

    Article  CAS  Google Scholar 

  13. R. A. A. Muzzarelli, Carbohydr. Polym., 77, 1 (2009).

    Article  CAS  Google Scholar 

  14. A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, Pharmacol. Rep., 64, 1020 1(2012).

    Article  CAS  Google Scholar 

  15. G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, and S. K. Bannerjee, Int. J. Pharm. Investig., 2, 2 (2012).

    Article  Google Scholar 

  16. B. B. Aggarwal and K. B. Harikumar, Int. J. Biochem. Cell Biol., 41, 40 (2009).

    Article  CAS  Google Scholar 

  17. P. Anand, S. G. Thomas, A. B. Kunnumakkara, C. Sundaram, K. B. Harikumar, B. Sung, S. T. Tharakan, K. Misra, I. K. Priyadarsini, K. N. Rajasekharan, and B. B. Aggarwal, Biochem. Pharmacol., 76, 1590 (2008).

    Article  CAS  Google Scholar 

  18. J. J. Johnson and H. Mukhtar, Cancer Lett., 255, 170 (2007).

    Article  CAS  Google Scholar 

  19. R. K. Maheshwari, A. K. Singh, J. Gaddipati, and R. C. Srimal, Life Sci., 78, 2081 (2006).

    Article  CAS  Google Scholar 

  20. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, Mol. Pharm., 4, 807 (2007).

    Article  CAS  Google Scholar 

  21. N. Sowasod, K. Nakagawa, W. Tanthapanichakoon, and T. Charinpanitkul, Mater. Sci. Eng. C, 32, 790 (2012).

    Article  CAS  Google Scholar 

  22. X. Li, S. Chen, B. Zhang, M. Li, K. Diao, Z. Zhang, J. Li, Y. Xu, X. Wang, and H. Chen, Int. J. Pharm., 437, 110 (2012).

    Article  CAS  Google Scholar 

  23. M. Sun, X. Su, B. Ding, X. He, X. Liu, A. Yu, H. Lou, and G. Zhai, Nanomedicine-UK, 7, 1085 (2012).

    Article  CAS  Google Scholar 

  24. A. Anitha, S. Maya, N. Deepa, K. P. Chennazhi, S. V. Nair, H. Tamura, and R. Jayakumar, Carbohydr. Polym., 83, 452 (2011).

    Article  CAS  Google Scholar 

  25. X. Ma, T. Songkroh, W. Yu, H. Xie, X. Liu, and W. Xie, PCT Patent WO2014005471A1 (2014).

    Google Scholar 

  26. X. Ma, H. Xie, W. Yu, and T. Songkroh, Chinese Patent CN103524795A (2014).

    Google Scholar 

  27. M. O. Wang, J. M. Etheridge, J. A. Thompson, C. E. Vorwald, D. Dean, and J. P. Fisher, Biomacromolecules, 14, 1321 (2013).

    Article  CAS  Google Scholar 

  28. M. Lavertu, D. Filion, and M. D. Buschmann, Biomacromolecules, 9, 640 (2008).

    Article  CAS  Google Scholar 

  29. F.-L. Mi, S.-S. Shyu, and C.-K. Pen, J. Polym. Sci. Part A: Polym. Chem., 43, 1985 (2005).

    Article  CAS  Google Scholar 

  30. F.-L. Mi, H.-W. Sung, and S.-S. Shyu, J. Polym. Sci. Part A: Polym. Chem., 38, 2804 (2000).

    Article  CAS  Google Scholar 

  31. G. Woodard, in Methods of Animal Experimentation, W. J. Gay, Ed., Academic Press, New York, 1965, Vol. 1, p 343.

    Article  Google Scholar 

  32. S. Shimizu, in Chapter 32 — Routes of Administration, H. J. Hedrich and G. Bullock, Eds., Academic Press, New York, 2004, p 527.

  33. M. Ishiyama, Y. Miyazono, M. Shiga, and K. Sasamoto, US Patent US6063587A (2000).

    Google Scholar 

  34. R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, and V. Préat, Adv. Polym. Sci., 244, 19 (2011).

    Article  CAS  Google Scholar 

  35. M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chem. Rev., 104, 6017 (2004).

    Article  Google Scholar 

  36. Y.-S. Paik, C.-M. Lee, M.-H. Cho, and T.-R. Hahn, J. Agric. Food Chem., 49, 430 (2001).

    Article  CAS  Google Scholar 

  37. C. P. Brewer, B. Dawson, K. E. Wallman, and K. J. Guelfi, Int. J. Sport Nutr. Exerc. Metab., 23, 187 (2013).

    CAS  Google Scholar 

  38. H. C. Lukaski, in Chapter 10 — Magnesium, Phosphate, and Calcium Supplementation and Human Physical Performance, J. A. Driskell and I. Wolinsky, Eds., CRC Press, Florida, 2004, p 197.

  39. Regulation (EC) No 1333/2008 (OJ L354, p16, 31/12/2008) of the European Parliament and of the Council of 16 December 2008 on Food Additives (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Songkroh, T., Xie, H., Yu, W. et al. Injectable in situ forming chitosan-based hydrogels for curcumin delivery. Macromol. Res. 23, 53–59 (2015). https://doi.org/10.1007/s13233-015-3006-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3006-4

Keywords

Navigation