Skip to main content
Log in

ATRP graft copolymerization of poly(N-isopropylacrylamide-co-acrylic acid) on multiwalled carbon nanotubes

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The polymer functionalized multiwalled carbon nanotubes (MWCNT) have been prepared by atom transfer radical graft copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) monomers from their binary mixture at fixed feed molarity and composition (f NIPAAm ). The donor-acceptor interactions between acrylic acid and N-isopropylacrylamide have enhanced the activity of N-isopropylacrylamide for grafting onto MWCNT (52%) in comparison to individual grafting of N-isopropylacrylamide onto MWCNT (38%). The CuBr and N′N′N′N′N′-pentamethyldiethylenetriamine (PMDETA) were used as ATRP catalysts for graft copolymerization of N-isopropylacrylamide and acrylic acid onto multiwalled carbon nanotubes. The copolymers grafted onto MWCNT were of high molecular weight (42×103 g mol−1) with low molecular weight dispersity (1.13) at 0.1 M a feed molarity and feed composition (f NIPAAm ) of 0.6. The graft yield (%G), molecular weight (MW), and sequence length of N-isopropylacrylamide and acrylic acid monomers (mM1 an mM2) in the grafted chains varied significantly with varying feed composition (f NIPAAm ). The grafting produced highly water soluble multiwalled carbon nanotubes in comparison to pristine MWCNT. The grafted copolymer chain dispersity varied with solution temperature and pH due to the temperature and pH sensitivity of the monomers. The poly(N-isopropylacrylamide-co-acrylic acid) grafted chains were characterized by FT-IR and NMR techniques for their structures and thermal stability as determined by TGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Chen, X. Zuo, S. Su, Z. Tang, A. Wu, S. Song, D. Zhang, and C. Fan, Analyst, 133, 1182 (2008).

    Article  CAS  Google Scholar 

  2. S. Mantha, V. A. Pedrosa, E. V. Olsen, V. A. Davis, and A. L. Simonian, Langmuir, 26, 19114 (2010).

    Article  CAS  Google Scholar 

  3. Y. Liu, D. C. Wu, W. D. Zhang, X. Jiang, C. B. He, T. S. Chung, S. H. Goh, and K. W. Leong, J. Angew. Chem. Int. Ed., 44, 4782 (2005).

    Article  CAS  Google Scholar 

  4. C. Dwyer, M. M. Guthold, M. Falvo, S. Washburn, R. Superfine, and D. Erie, Nanobiotechnology, 13, 601 (2002).

    Article  CAS  Google Scholar 

  5. S. Iijima, Nature, 354, 56 (1991).

    Article  CAS  Google Scholar 

  6. Y. Wang, Z. Iqbal, and S. Mitra, J. Am. Chem. Soc., 128, 95 (2006).

    Article  Google Scholar 

  7. R. J. Chen, Y. Zhang, D. Wang, and H. Dai, J. Am. Chem. Soc., 123, 3838 (2001).

    Article  CAS  Google Scholar 

  8. A. Star, D. W. Steuerman, J. R. Heath, and J. F. Stoddart, J. Angew. Chem. Int. Ed., 41, 2508 (2002).

    Article  CAS  Google Scholar 

  9. G. R. Dieckmann, A. B. Dalton, P. A. Johnson, Z. Razal, J. Chen, G. M. Giordano, E. Munoz, I. H. Musselmann, R. H. Baughman, and R. K. Draper, J. Am. Chem. Soc., 127, (2003).

  10. K. Jiang, L. S. Schdder, R. W. Siegel, X. Zhang, H. Zhange, and M. Terronesd, J. Mater. Chem., 14, 37, (2004).

    Article  CAS  Google Scholar 

  11. Y. Lin, D. E. Hill, J. Bentley, L. F. Alland, and S. P. Sun, J. Phys. Chem. B, 161, 10453 (2003).

    Article  Google Scholar 

  12. P. Gunawan, C. Guan, X. Song, Q. Zhang, S. S. J. Leong, C. Tong, Y. Chen, M. B. Chan-Pak, M. W. Chang, K. Wang, and R. Xu, ACS Nano, 12, 10033 (2011).

    Article  Google Scholar 

  13. L. Sun, G. L. Warren, J. Y. O’Reilly, W. N. Everett, S. M. Lee, D. Davis, D. Legoudas, and H. J. Sue, Carbon, 46, 320 (2008).

    Article  CAS  Google Scholar 

  14. D. Wang and L. W. Chen, Nano Lett., 7, 1480 (2007).

    Article  CAS  Google Scholar 

  15. M. Wladyka-Przybylak, D. Wesolek, W. Gieparda, A. Boczkowska, and E. Ciecierska, Polym. Adv. Technol., 22, 48 (2011).

    Article  CAS  Google Scholar 

  16. J. C. Grunlan, L. Liu, and O. J. Rgev, J. Colloid Interface Sci., 317, 346 (2008).

    Article  CAS  Google Scholar 

  17. P. Theato, K. C. Etika, F. D. Jochum, M. A. Cox, P. Shatling, and J. C. Grunlan, Macromol. Rapid Commun., 31, 1368 (2010).

    Article  Google Scholar 

  18. N. Maeda, T. Nakamura, and I. Ikada, Macromol. Rapid Commun., 31, 1368 (2001).

    Google Scholar 

  19. P. Thiato, K. C. Etika, F. D. Jochun, and J. C. Grunlan, J. Am. Chem. Soc., 31, 13598 (2009).

    Google Scholar 

  20. K. C. Gupta, Polym. Prept. Am. Chem. Soc. Div. Polym. Chem., 50, 174 (2009).

    CAS  Google Scholar 

  21. K. C. Gupta and K. Khandekar, Polym. Int., 55, 139 (2006).

    Article  CAS  Google Scholar 

  22. M. Humear, Chem. Eur. J., 15, 2111 (2009).

    Article  Google Scholar 

  23. H. Y. Liu and X. X. Zhu, Polymer, 40, 69 (1999).

    Google Scholar 

  24. G. Chen and A. S. Hoffan, Nature, 373, 49 (1995).

    Article  CAS  Google Scholar 

  25. P. Dimitrios, S. Georgios, W. M. Jimmy, and H. Nikos, J. Polym. Sci. Part A: Polym. Chem., 48, 1104 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. C. Gupta or Inn-Kyu Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, K.C., Kang, IK. ATRP graft copolymerization of poly(N-isopropylacrylamide-co-acrylic acid) on multiwalled carbon nanotubes. Macromol. Res. 22, 948–957 (2014). https://doi.org/10.1007/s13233-014-2132-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2132-8

Keywords

Navigation