Skip to main content
Log in

Factors influencing the resistivity–temperature behavior of carbon black filled isotactic polypropylene/high density polyethylene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The relationship between morphology and resistivity–temperature behavior of carbon black (CB) filled isotactic polypropylene/high density polyethylene (iPP/HDPE) composites was investigated. The positive temperature coefficient intensity for all composites studied in this paper was lower than one and the negative temperature coefficient (NTC) effect was obvious. The factors influencing resistivity–temperature behavior include the CB contents, types of the polymer matrices and their composition, which determine the phase morphology and thus the conductive network. The types of iPP and HDPE influenced the NTC effect, while the morphology of the composites mainly influenced the initial volume resistivity of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Del Rio C, Ojeda MC, Acosta JL (2000) Carbon black effect on the microstructure of incompatible polymer blends. Eur Polym J 36(8):1687–1695

    Article  Google Scholar 

  2. Xu SX, Wen M, Li J, Guo SY, Wang M, Du Q, Shen J, Zhang Y, Jiang S (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870

    Article  CAS  Google Scholar 

  3. Wu G, Miura T, Asai S, Sumita M (2001) Carbon black-loading induced phase fluctuations in PVDF/PMMA miscible blends: dynamic percolation measurements. Polymer 42(7):3271–3279

    Article  CAS  Google Scholar 

  4. Zhang W, Dehghani-Sanij AA, Blackburu RS (2007) Carbon based conductive polymer composites. J Mater Sci 42(10):3408–3418

    Article  CAS  Google Scholar 

  5. Frydman E (1945) Improvements in or relating to resistance elements having positive temperature/resistance characteristics. UK Patent p 604–695

  6. Kohler F Plastic resistance elements and methods for making same. US Patent 1966-3-243-753

  7. Liua Fu, Zhang Xiaobin, Li Wenchun, Cheng Jipeng, Tao Xinyong, Li Yu, Sheng Lie (2009) Investigation of the electrical conductivity of HDPE composites filled with bundle-like MWNTs. Compos A Appl Sci Manuf 40(11):1717–1721

    Article  Google Scholar 

  8. Xu HP, Wu YH, Yang DD, Wang JR, Xie HQ (2011) Study on theories and influence factors of ptc property in polymer-based conductive composites. Rev Adv Mater Sci 27:173–183

    Google Scholar 

  9. Xi Y, Ishikawa H, Bin YZ, Matsuo M (2004) Positive temperature coefficient effect of LMWPE-UHMWPE blends filled with short carbon fibers. Carbon 42(8–9):1699–1706

    Article  CAS  Google Scholar 

  10. Feng JY, Chan CM (2000) Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene–ethylene containing carbon black-filled HDPE particles. Polymer 41(19):7279–7282

    Article  CAS  Google Scholar 

  11. Luo YL, Wang GC, Zhang BY, Zhang ZP (1998) The influence of crystalline and aggregate structure on PTC characteristic of conductive polyethylene carbon black composite. Eur Polym J 8(8):1221–1227

    Article  Google Scholar 

  12. Feng JY, Chan CM (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41(12):4559–4565

    Article  CAS  Google Scholar 

  13. Gao JF, Yan DX, Huang HD, Dai K, Li ZM (2009) Positive temperature coefficient and time-dependent resistivity of carbon nanotubes (CNTs)/ultrahigh molecular weight polyethylene (UHMWPE) composite. J Appl Polym Sci 114(2):1002–1010

    Article  CAS  Google Scholar 

  14. Yu G, Zhang MQ, Zeng HM (1998) Carbon-black-filled polyolefin as a positive temperature coefficient material: effect of composition, processing, and filler treatment. J Appl Polym Sci 70(3):559–566

    Article  CAS  Google Scholar 

  15. Xu XB, Li ZM, Dai K, Yang MB (2006) Anomalous attenuation of the positive temperature coefficient of resistivity in a carbon-black-filled polymer composite with electrically conductive in situ microfibrils. Appl Phys Lett 89(3):032105-032105-3

    Google Scholar 

  16. Di WH, Zhang G, Peng Y, Zhao ZD (2004) Two-step PTC effect in immiscible polymer blends filled with carbon black. J Mater Sci 39(2):695–697

    Article  CAS  Google Scholar 

  17. Yu G, Zhang MQ, Zeng HM, Hou YH, Zhang HB (1999) Conductive polymer blends filled with carbon black: positive temperature coefficient behavior. Polym Eng Sci 39(9):1678–1688

    Article  CAS  Google Scholar 

  18. Feng JY, Chan CM (1999) Carbon black-filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: the relationship between morphology and positive and negative temperature coefficient effects. Polym Eng Sci 39(7):1207–1215

    Article  CAS  Google Scholar 

  19. Mironi-Harpaz I, Narkis M (2001) Electrical behavior and structure of polypropylene/ultrahigh molecular weight polyethylene/carbon black immiscible blends. J Appl Polym Sci 81(1):104–115

    Article  CAS  Google Scholar 

  20. Xu HP, Dang ZM, Yao SH, Jiang MJ, Wang DY (2007) Exploration of unusual electrical properties in carbon black/binary-polymer nanocomposites. Appl Phys Lett 90(15): 52912- 152912-3.

    Google Scholar 

  21. Xu HP, Dang ZM, Shi DH, Bai JB (2008) Remarkable selective localization of modified nanoscale carbon black and positive temperature coefficient effect in binary-polymer matrix composites. J Mater Chem 18:2685–2690

    Article  CAS  Google Scholar 

  22. Isaji S, Bin YZ, Matsuo M (2009) Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films. Polymer 50(4):1046–1053

    Article  CAS  Google Scholar 

  23. Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22

    Article  CAS  Google Scholar 

  24. Narkis M, Ram A, Flashner F (1978) Electrical properties of carbon black filled polyethylene. Polym Eng Sci 18(8):649–653

    Article  CAS  Google Scholar 

  25. Narkis M, Vaxman A (1984) Resistivity behavior of filled electrically conductive crosslinked polyethylene. J Appl Polym Sci 29(5):1639–1652

    Article  CAS  Google Scholar 

  26. Mironi-Harpaz I, Narkis M (2001) Thermoelectric behavior (PTC) of carbon black-containing TPX/UHMWPE and TPX/XL-UHMWPE blends. J Polym Sci Part B Polym Phys 39(12):415–1428

    Article  Google Scholar 

  27. Li Q, Basavarajaiah S, Kim NH, Heo SB, Lee JH (2010) Synergy effect of hybrid fillers on the positive temperature coefficient behavior of polypropylene/ultra-high molecular weight polyethylene composites. J Appl Polym Sci 116(1):116–124

    Article  CAS  Google Scholar 

  28. Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical condcutivity of polymer blends filled with carbon black. Polym Bull 25(2):265–271

    Article  CAS  Google Scholar 

  29. Gao YJ, Liu ZY, Yin CL, Huang SL, Yang MB (2012) Preparing iPP/HDPE/CB functionally gradient materials: influence factors of components and processing. Ploym Adv Technol 23(3):695–701

    Article  CAS  Google Scholar 

  30. Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270(2):134–139

    Article  CAS  Google Scholar 

  31. Yui H, Wu GZ, Sano H, Sumita M, Kino K (2006) Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene. Polymer 47(10):3599–3608

    Article  CAS  Google Scholar 

  32. Medalia A (1986) Electrical conduction in carbon black composites. Rubber Chem Technol 59(3):432–454

    Article  CAS  Google Scholar 

  33. Dang ZM, Li WK, Xu HP (2009) Origin of remarkable positive temperature coefficient effect in the modified carbon black and carbon fiber cofilled polymer composites. J Appl Phys 106(2):024913-024913-5

    Article  Google Scholar 

  34. Lee JK, Han CD (1999) Evolution of a dispersed morphology from a co-continuous morphology in immiscible polymer blends. Polymer 40(10):2521–2536

    Article  CAS  Google Scholar 

  35. Mohanraj GT, Chaki TK, Chakraborty A, Khastgir D (2004) Effect of some service condition on the electrical resistivity of conductive styrene-butadiene rubber-carbon black composites. J Appl Polym Sci 92(4):2179–2188

    Article  CAS  Google Scholar 

  36. Li RQ, Dou DY, Miao JL, Wang WF, Yao SD, Zeng HM (2002) Complicated resistivtiy-temperature behavior in polymer composites. J Appl Polym Sci 86(9):2217–2221

    Article  CAS  Google Scholar 

  37. Dai K, Li ZM, Xu XB (2008) Electrically conductive in situ microfibrillar composites with a selective carbon black distribution: an unusual resistivity-temperature behavior upon cooling. Polymer 49(4):1037–1048

    Article  CAS  Google Scholar 

  38. Narkis M, Ram A, Stein Z (1981) Electrical properties of carbon black filled crosslinked polyethylene. Polym Eng Sci 21(16):1049–1054

    Article  CAS  Google Scholar 

  39. Tang H, Piao JH, Chen XF, Luo YX, Li SH (1993) The positive temperature coefficient phenomenon of vinyl polymer/CB composites. J Appl Polym Sci 48(10):1795–1800

    Article  CAS  Google Scholar 

  40. Shen Y, Lin Y, Li M, Nan CW (2007) High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv Mater 19(10):1418–1422

    Article  CAS  Google Scholar 

  41. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15(19):1625–1629

    Article  CAS  Google Scholar 

  42. Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni-Ba TiO3/polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816

    Article  CAS  Google Scholar 

  43. Dang ZM, Shen Y, Fan LZ, Cai N, Nan CW, Zhao SJ (2003) Dielectric properties of carbon fiber filled low-density polyethylene. J Appl Phys 93(9):5543–5545

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged the National Natural Science Foundation of China (Grant No. 51103087). We were also thankful to Mr. Zhu Li from the Center of Analysis and Test of Sichuan University for the careful SEM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Ying Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, LR., Gao, YJ., Huang, SL. et al. Factors influencing the resistivity–temperature behavior of carbon black filled isotactic polypropylene/high density polyethylene composites. Polym. Bull. 71, 1403–1419 (2014). https://doi.org/10.1007/s00289-014-1131-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1131-4

Keywords

Navigation