Skip to main content

Advertisement

Log in

In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: a historical overview

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this review, the recent advances in the development of in situ Raman spectroscopy and electrochemical techniques and their application for the study of lithium-ion batteries are revisited. It is demonstrated that, during a relatively short period of time (1995–2013), the spectroelectrochemical techniques used for the investigation of battery components, benefited directly from the tremendous advances of Raman technology. The most important step was the implementation of confocal Raman microscopy in the battery research, which opened the way to new and more sophisticated applications. This review shows how the discovery of new Raman techniques such as surface-enhanced Raman scattering, tip-enhanced Raman spectroscopy, spatially offset Raman spectroscopy as well as the integration of Raman spectrometers into non-optical microscopes, for example AFM and SEM, allowed to perform two or more analytical techniques on the same sample region, with an exceptionally high resolution. All these progresses led to new insights into battery materials and components such as electrodes and electrolytes, and helped to understand the electrode/electrolyte interface phenomena. This enhanced understanding allowed a deeper insight into important phenomena, as e.g., battery aging and the dynamic nature of the solid electrolyte interfaces in lithium batteries. The high relevance of the information provided by these techniques in the progress of battery modeling is another positive contribution. Another area of high practical significance for the battery field is the screening of electrode materials, which is facilitated by the availability of the data provided by spectroscopic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Yet-Ming C (2010) Science 330:1485

    Article  Google Scholar 

  2. Raman CV, Krishnan KS (1928) Nature 121:711

    Article  CAS  Google Scholar 

  3. Landsberg G, Mandelstam L (1928) Naturwissenschaften 16:557

    Article  CAS  Google Scholar 

  4. Delhaye M, Migeon M (1966) C R Acad Sci Paris 262:702

    Google Scholar 

  5. Delhaye M, Dhamelincourt P (1975) J Raman Spectrosc 3:33

    Article  CAS  Google Scholar 

  6. Delhaye M, Dhamelincourt PP, Wallart F, Lechlerg M, N’Guyen AT, London DO (1979) Anal Chem 51:414A

    Google Scholar 

  7. Andersen ME, Muggli RZ (1981) Anal Chem 53:1772

    Article  CAS  Google Scholar 

  8. Adar F, Delhaye M, DaSilva E (2007) J Chem Educ 84:50

    Article  CAS  Google Scholar 

  9. Matousek P, Clark IP, Draper ERC, Morris MD, Goodship AE, Everall N, Towrie M, Finney WF, Parker AW (2005) Appl Spectrosc 59:393

    Article  CAS  Google Scholar 

  10. DeGraff BA, Hennip M, Jones JM, Salter C, Schaertel SA (2002) Chem Educ 7:15

    Article  CAS  Google Scholar 

  11. Baddour-Hadjean R, Pereira-Ramos J-P (2010) Chem Rev 110:1278

    Article  CAS  Google Scholar 

  12. Amaraj SF, Aurbach D (2011) J Solid State Electrochem 15:877

    Article  Google Scholar 

  13. Aurbach D, Zaban A, Gofer Y, Ein Ely Y, Weissman I, Chusid O, Abranson O (1995) J Power Sources 54:76

    Article  CAS  Google Scholar 

  14. Odziemkowski M, Irish DE (1992) J Electrochem Soc 139:3063

    Article  CAS  Google Scholar 

  15. Verma P, Maire P, Novák P (2010) Electrochim Acta 55:6332

    Article  CAS  Google Scholar 

  16. Campana FP, Kötz R, Vetter J, Novák P, Siegenthaler H (2005) Electrochem Commun 7:107

    Article  CAS  Google Scholar 

  17. Dolle M, Grugeon S, Beaudoin B, Dupont L, Tarascon J-M (2001) J Power Sources 97–98:104

    Article  Google Scholar 

  18. Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M (1995) J Electrochem Soc 142:20

    Article  CAS  Google Scholar 

  19. Inaba M, Yoshida H, Ogumi Z (1996) J Electrochem Soc 143:2572

    Article  CAS  Google Scholar 

  20. Zanini M, Basu S, Fischer JE (1978) Carbon 16:211

    Article  CAS  Google Scholar 

  21. Eklund PC, Dresselhaus G, Dresselhaus MS, Fischer JE (1980) Phys Rev 21B:4705

    Article  Google Scholar 

  22. Doll GL, Eklund PC (1987) Phys Rev 36B:4940

    Article  Google Scholar 

  23. Underhill C, Leung SY, Dresselhaus G, Dresselhaus MS (1979) Solid State Commun 29:700

    Article  Google Scholar 

  24. Dahn JR (1991) Phys Rev B44:9170

    Article  Google Scholar 

  25. Endo M, Kim C, Karaki T, Fujino T, Matthews MJ, Brown SDM, Dresselhaus MS (1998) Synth Met 98:17

    Article  CAS  Google Scholar 

  26. Occupational Safety & Health Administration, OSHA Technical Manual (OTM), Section III, Chap 6, Laser Hazards, United States, Department of Labor (1999)

  27. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K (2000) Carbon 38:183

    Article  CAS  Google Scholar 

  28. Rey I, Bruneel J-L, Grondin J, Servant L, Lassegues JC (1998) J Electrochem Soc 145:3034

    Article  CAS  Google Scholar 

  29. Rey I, Lassègues JC, Baudry P, Majastre H (1998) Electrochim Acta 43:1539

    Article  CAS  Google Scholar 

  30. Minsky M (1988) Scanning 10:128

    Article  Google Scholar 

  31. Dhamelincourt P, Barbillat J, Delhaye M (1993) Spectrosc Eur 5:16

    CAS  Google Scholar 

  32. http://www.olympusconfocal.com. Accessed 15 Nov 2012

  33. Princeton Instruments www.placton.com. Accessed 15 Nov 2012

  34. Rey I (1997) Thesis, Université de Bordeaux

  35. Doyle M, Fuller TF, Newman J (1993) J Electrochem Soc 140:1526

    Article  CAS  Google Scholar 

  36. Brissot C, Rosso M, Chazalviel J-N, Lascaud S (1999) J Electrochem Soc 146:4393

    Article  CAS  Google Scholar 

  37. Brissot C, Rosso M, Rosso JN, Chazalviel JN, Lascaud S (2001) J Power Sources 94:212

    Article  CAS  Google Scholar 

  38. Novák P, Panitz J-C, Joho F, Lanz M, Imhof R, Coluccia M (2000) J Power Sources 90:52

    Article  Google Scholar 

  39. Panitz J-C, Joho F, Novak P (1999) Appl Spectrosc 53:1188

    Article  CAS  Google Scholar 

  40. Aurbach D, Markovski B, Lavi MD, Levi E, Schechter A, Moshkovich M, Cohen Y (1999) J Power Sources 81/82:95

    Article  Google Scholar 

  41. Novák P, Joho F, Lanz M, Rycart B, Panitz J-C, Alliata D, Kötz R, Haas O (2001) J Power Sources 97–98:39

    Article  Google Scholar 

  42. Zane D, Antonini A, Pasquali M (2001) J Power Sources 97–98:146

    Article  Google Scholar 

  43. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y (1999) Electrochim Acta 45:67

    Article  CAS  Google Scholar 

  44. Novák P, Goers D, Hardwick L, Holzapfel M, Scheifele W, Ufheil J, Würsig A (2005) J Power Sources 146(2005):15–20

    Article  Google Scholar 

  45. Besenhard JO, Winter M, Yang J, Biberacher W (1995) J Power Sources 54:228

    Article  CAS  Google Scholar 

  46. Xu K (2010) Energies 3:135

    Article  CAS  Google Scholar 

  47. Martha SK, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D, Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M, Kovacheva D, Saliyski N (2009) J Power Sources 189:288

    Article  CAS  Google Scholar 

  48. Fleischmann M, Hendra PJ, MacQuillan A (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  49. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (1999) Chem Rev 99:2957

    Article  CAS  Google Scholar 

  50. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  51. Otto A, Mrozek I, Grabborn H, Akemann W (1992) J Phys Condens Matter 4:1143

    Article  CAS  Google Scholar 

  52. Furtak TE (1982) J Electroanal Interfacial Electrochem 150:375

    Article  Google Scholar 

  53. Badilescu S, Ashrit PV, Vo-Van T, Badilescu II (1989) Appl Spectrosc 43:549

    Article  CAS  Google Scholar 

  54. Irish DE, Deng Z, Odziemkowski M (1995) J Power Sources 54:28

    Article  CAS  Google Scholar 

  55. Li G, Li H, Mo Y, Huang X, Chen L (2000) Chem Phys Lett 330:249

    Article  CAS  Google Scholar 

  56. Li G, Li H, Mo Y, Chen L, Huang X (2002) J Power Sources 104:190

    Article  CAS  Google Scholar 

  57. Naudin C, Bruneel JL, Chami M, Desbat B, Grondin J, Lassègues JC (2003) J Power Sources 124:518

    Article  CAS  Google Scholar 

  58. Luo Y, Wen-Bin C, Xue-Kun X, Scherson DA (2004) Electrochem Solid-State Lett 2004:E1

    Article  Google Scholar 

  59. Novak P, Goers D, Hardwick L, Holzapfel M, Scheifele W, Ufheil J, Würsig A (2005) J Power Sources 146:15

    Article  CAS  Google Scholar 

  60. Hardwick LJ, Hahn M, Ruch P, Holzapfel M, Scheifele W, Buqa H, Krumeich F, Novák P, Kötz R (2006) Electrochim Acta 52:675

    Article  CAS  Google Scholar 

  61. Ruch PW, Hardwick LJ, Hahn M, Foelske A, Kötz R, Wokaun A (2009) Carbon 47:38

    Article  CAS  Google Scholar 

  62. Markevich E, Baranchugov V, Salitra G, Aurbach D, Schmidt MA (2008) J Electrochem Soc 155:A132

    Article  CAS  Google Scholar 

  63. Haijun Yu and Haoshen Zhou (2013) J Phys Chem Lett 4:1268–1280

    Article  Google Scholar 

  64. Francis Amalraj S, Markovsky B, Sharon D, Talianker M, Zinigrad E, Persky R, Haik O, Grinblat J, Lampert J, Schultz-Dobrick M, Garsuch A, Burlaka L, Aurbach D (2012) Electrochim Acta 78:32–39

    Article  CAS  Google Scholar 

  65. Lanz P, Villevieille C, Novák P (2013) Electrochim Acta 109:426–432

    Article  CAS  Google Scholar 

  66. Singh G, West WC, Soler J, Katiyar RS (2012) J Power Sources 218:34–38

    Article  CAS  Google Scholar 

  67. Park M-H, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Nano Lett 9:3844

    Article  CAS  Google Scholar 

  68. Chan CK, Hailin P, Gao L, McIlwrath K, Xiao Feng Z, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31

    Article  CAS  Google Scholar 

  69. Li-Feng C, Ruffo R, Chan CK, Hailin P, Yi C (2009) Nano Lett 9:491

    Article  Google Scholar 

  70. Chan CK, Patel RN, O’Connell MJ, Korgel BA, Cui Y (2009) ACS Nano 4:1443

    Article  Google Scholar 

  71. Zhou X, Yin Y-X, Wan L-J, Guo Y-G (2012) Chem Commun 48:2198

    Article  CAS  Google Scholar 

  72. Chen M, Du C, Wang L, Yin G, Shi P (2012) Int J Electrochem Sci 7:819

    CAS  Google Scholar 

  73. Aurbach D (2005) J Power Sources 146:71

    Article  CAS  Google Scholar 

  74. Yang Y, Jeong S, Hu L, Wu H, Wuo Lee S, Cui Y (2011) PNAS 108:13013

    Article  CAS  Google Scholar 

  75. Stura E, Nicolini C (2006) Anal Chim Acta 568:57

    Article  CAS  Google Scholar 

  76. Song T, Xia JL, Lee JH, Lee DH, Kwon MS, Choi J (2010) Nano Lett 10:1710

    Article  CAS  Google Scholar 

  77. Murugesan S, Harris JT, Korgel BA, Stevenson KJ (2012) Chem Mater 24:1306

    Article  CAS  Google Scholar 

  78. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nat Mater 4:366

    Article  Google Scholar 

  79. Lee KT, Cho J (2011) Nano Today 6:28

    Article  CAS  Google Scholar 

  80. Liu HK, Wang GX, Guo ZP, Wang JZ, Konstantinov V (2007) J New Mater Electrochem Syst 10:1014

    Google Scholar 

  81. Dillon AC, Mahan AH, Deshpande R, Parilla PA, Jones KM, Lee S-H (2008) Thin Solid Films 516:794

    Article  CAS  Google Scholar 

  82. Badilescu S, Ashrit PV (2003) Solid State Ion 158:187

    Article  CAS  Google Scholar 

  83. Badilescu S, Minh-Ha N, Bader G, Ashrit PV, Girouard FE, Vo-Van T (1993) J Mol Struct 297:393

    Article  CAS  Google Scholar 

  84. Li CP, Wolden CA, Dillon AC, Tenent RC (2012) Sol Energy Mater Sol Cells 99:50

    Article  CAS  Google Scholar 

  85. B. Foster (2007) Amer Lab, 39:March

  86. http://www.azonano.com/article.aspx?ArticleID=3053. Accessed 10 May 2013

  87. (http://www.tokyoinst.co.jp). Accessed 15 May 2013

  88. Jebin A, Jebaraj J, Scherson DA (2013) Acc Chem Res 46:1192

    Article  Google Scholar 

  89. Shearing P, Wu Y, Harris SJ, Brandon N (2011) Electrochem Soc Interface 20:43

    CAS  Google Scholar 

  90. Lee JT, Nitta N, Benson J, Magasinski A, Fuller TF, Yushin G (2013) Carbon 52:388

    Article  CAS  Google Scholar 

  91. Morcrette M, Chabre Y, Vaughan G, Amatucci G, Leriche J-B, Patoux S, Masquelier C, Tarascon J-M (2002) Electrochim Acta 47:3137

    Article  CAS  Google Scholar 

  92. Sharma N, Peterson VK, Elcombe MM, Avdeev M, Studer AJ, Blagojevic N, Yussoff R, Kamarulzaman N (2010) J Power Sources 195:8258

    Article  CAS  Google Scholar 

  93. Godbole VA, Heß M, Villevieille C, Kaiser H, Colin J-F, Novak P (2013) RSC Adv 3:757

    Article  CAS  Google Scholar 

  94. Xun-Li W, Ke A, Lu C, Zhili F, Nagler SE, Daniel C, Rhodes KJ, Stoica D, Skorpenske HD, Chengdu L, Wei Z, Joon K, Yue Q, Stephen J, Harris SJ (2012) Sci Rep 2:747

    Google Scholar 

  95. Lu C, Ke A, Zhili F, Chengdu L, Harris SJ (2013) J Power Sources 236:163

    Article  Google Scholar 

  96. Trease NM, Köster TKJ, Grey CP (2011) The Electrochemical Society Interface Fall:69

  97. Dupré N, Cuisinier M, Guyomard D (2011) The Electrochemcial Soc Interface Fall:61

  98. Smart MC, Ratnakumar BV, Surampudi S, Wang Y, Zhang X, Greenbaum SG, Hightower A, Ahn CC, Fultz B (1999) J Electrochem Soc 146:3963

    Article  CAS  Google Scholar 

  99. Chandrashekar S, Trease NM, Hee Jung C, Lin Shu D, Grey CP (2012) Nat Mater 11:311

    Article  CAS  Google Scholar 

  100. Aurbach D (2000) J Power Sources 89:206

    Article  CAS  Google Scholar 

  101. Aurbach D, Cohen Y (1996) J Electrochem Soc 143:3525

    Article  CAS  Google Scholar 

  102. Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K, McLarnon F (2001) J Power Sources 97–98:58

    Article  Google Scholar 

  103. Yang Y, Jeong S, Hu L, Wu H, Wou Lee S, Cui Y (2011) PNS 108:13013

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Badilescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stancovski, V., Badilescu, S. In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: a historical overview. J Appl Electrochem 44, 23–43 (2014). https://doi.org/10.1007/s10800-013-0628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0628-0

Keywords

Navigation