Skip to main content
Log in

An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The biodetoxification of cyanide-rich wastewater has become increasingly popular because of its cost-effectiveness and environmental friendliness. Therefore, we have developed an effective method, optimised by response surface methodology, for detoxifying cyanide-rich wastewater using Bacillus sp. CN-22, which was newly isolated from a cyanide-contaminated electroplating sludge and could tolerate a CN concentration of 700 mg L−1. The concentration of CN in the treated wastewater decreased from 200 to 6.62 mg L−1 after cultivation with 2.38 % inocula for 72 h on the medium, consisting of 0.05 % KH2PO4, 0.15 % K2HPO4, 1.0 mM MgCl2, 1.0 mM FeCl3, 0.1 % NH4Cl, and 0.1 % glycerol. The CN degradability of 96.69 % is similar to the predicted value of 96.82 %. The optimal cultivation conditions were controlled as follows: initial pH, 10.3; temperature, 31 °C; and rotary speed, 193 rpm. The maintenance of higher pH in the overall treatment procedures may avoid the production of volatile HCN and the risk associated with cyanide detoxification. Additionally, the bacterial strain Bacillus sp. CN-22, with its potent cyanide-degrading activity at the initial CN concentration of 200 mg L−1, may be employed to effectively treat cyanide-rich wastewater, especially electroplating effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Afkhami A, Sarlak N, Zarei AR (2007) Simultaneous kinetic spectrophotometric determination of cyanide and thiocyanate using the partial least squares (PLS) regression. Talanta 71:893–899

    Article  PubMed  CAS  Google Scholar 

  • Akcil A, Karahan AG, Ciftci H, Sagdic O (2003) Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.). Miner Eng 16:643–649

    Article  CAS  Google Scholar 

  • Amsler K, Santoro C, Foleno B, Bush K, Flamm R (2010) Comparison of broth microdilution, agar dilution, and Etest for susceptibility testing of doripenem against gram-negative and gram-positive pathogens. J Clin Microbiol 48:3353–3357

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barclay M, Tett VA, Knowles CJ (1998) Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzyme Microb Technol 23:321–330

    Article  CAS  Google Scholar 

  • Chen CY, Kao CM, Chen SC (2008) Application of Klebsiella oxytoca immobilized cells on the treatment of cyanide wastewater. Chemosphere 71:133–139

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Liu JK (1999) The responses to cyanide of a cyanide resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol Lett 175:37–43

    Article  Google Scholar 

  • Dash RR, Gaur A, Balomajumder C (2009) Cyanide in industrial wastewaters and its removal: a review on biotreatment. J Hazard Mater 163:1–11

    Article  PubMed  CAS  Google Scholar 

  • Dash RR, Majumder CB, Kumar A (2008) A treatment of metal cyanide bearing wastewater by simultaneous adsorption biodegradation (SAB). J Hazard Mater 152:87–396

    Article  CAS  Google Scholar 

  • Dash RR, Majumder CB, Kumar A (2010) New fungal biomasses for cyanide biodegradation. J Biosci Bioeng 110:431–435

    Article  CAS  Google Scholar 

  • de Lillo A, Ashley FP, Palmer RM, Munson MA, Kyriacou L, Weightman AJ, Wade WG (2006) Novel subgingival bacterial phylotypes detected using multiple universal polymerase chain reaction primer sets. Oral Microbiol Immunol 21:61–68

    Article  PubMed  Google Scholar 

  • Dursun AY, Çalık A, Aksu Z (1999) Degradation of ferrous (II) cyanide complex ion by Pseudomonas fluorescens. Process Biochem 34:901–908

    Article  CAS  Google Scholar 

  • Ebbs S (2004) Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236

    Article  PubMed  CAS  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gurbuz F, Ciftci H, Akcil A (2009) A biodegradation of cyanide containing effluents by Scenedesmus obliquus. J Hazard Mater 162:74–79

    Article  PubMed  CAS  Google Scholar 

  • Gurbuz F, Ciftci H, Akcil A, Karahan AG (2004) Microbial detoxification of cyanide solutions: a new biotechnological approach using algae. J Hazard Mater 72:167–176

    CAS  Google Scholar 

  • Hamel J (2011) A review of acute cyanide poisoning with a treatment update. Crit Care Nurse 31:72–81

    Article  PubMed  Google Scholar 

  • Hijosa-Valsero M, Molina R, Schikora H, Müller M, Bayona JM (2013) Removal of cyanide from water by means of plasma discharge technology. Water Res 47:1701–1707

    Article  PubMed  CAS  Google Scholar 

  • Huertas MJ, Sáez LP, Roldán MD, Luque-Almagro VM, Martínez-Luque M, Blasco R, Castillo F, Moreno-Vivián C, García-García I (2010) Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor, influence of pH. J Hazard Mater 179:72–78

    Article  PubMed  CAS  Google Scholar 

  • Jandhyala D, Berman M, Meyers PR, Sewell BT, Willson RC, Benedik MJ (2003) CynD, the cyanide dihydratase from Bacillus pumilus: gene cloning and structural studies. Appl Environ Microbiol 69:4794–4805

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kao CM, Lin CC, Liu JK, Chen YL, Wu LT, Chen SC (2004) Biodegradation of the metal-cyano complex tetracyanonickelate (II) by Klebsiella oxytoca. Enzyme Microb Technol 35:405–410

    Article  CAS  Google Scholar 

  • Koksunan S, Vichitphan S, Laopaiboon L, Vichitphan K, Han J (2013) Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system. J Microbiol Biotechnol 23:572–578

    Article  PubMed  CAS  Google Scholar 

  • Luque-Almagro VM, Merchán F, Blasco R, Igeño MI, Martínez-Luque M, Moreno-Vivián C, Castillo F, Roldán MD (2011) Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate: quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain. Microbiology 157:739–746

    Article  PubMed  CAS  Google Scholar 

  • Meyers PR, Gokool P, Rawlings DE, Woods DR (1991) An efficient cyanide-degrading Bacillus pumilus strain. J Gen Microbiol 137:1397–1400

    Article  PubMed  CAS  Google Scholar 

  • Naveen D, Majumder CB, Mondal P, Shubha D (2011) Biological treatment of cyanide containing wastewater. Res J Chem Sci 1(7):15–21

    Google Scholar 

  • Patil YB, Paknikar KM (2000) Development of a process for biodetoxification of metal cyanides from wastewater. Process Biochem 35:1139–1151

    Article  CAS  Google Scholar 

  • Sinha R, Singh S, Srivastava P (2013) Studies on process optimization methods for rapamycin production using Streptomyces hygroscopicus ATCC 29253. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-1051-y

    PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Uchimoto T, Iwao Y, Hattori H, Noguchi S, Itai S (2013) Determination of useful ranges of mixing conditions for glycerin fatty acid ester by multiple regression analysis. Chem Pharm Bull 61:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Wu CF, Feng AJ, Xu XM, Huang SH, Deng MC, Zheng XN, Wu XY, Peng J, Yuan JP, Wang JH (2012) Construction of recombinant Pichia strain GS115-Ch-Glu expressing β-glucosidase and cyanide hydratase for cyanogenic glycosides detoxification. Afr J Biotechnol 11:4424–4433

    Article  CAS  Google Scholar 

  • Wu CF, Xu Y, Tao Y, Yang JY (2009) Establishment of hypoglycemic agent screening method based on human glucokinase. Biomed Environ Sci 22:62–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was co-supported by the Fundamental Research Funds for the Central Universities (no. 10lgzd07) and the National Key Basic Research Program of China (973 Programme) (no. 2012CB956004).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ping Yuan or Jiang-Hai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CF., Xu, XM., Zhu, Q. et al. An effective method for the detoxification of cyanide-rich wastewater by Bacillus sp. CN-22. Appl Microbiol Biotechnol 98, 3801–3807 (2014). https://doi.org/10.1007/s00253-013-5433-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5433-5

Keywords

Navigation