Skip to main content
Log in

Curable polyester precursors from polylactic acid glycolyzed products

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Curable precursors are prepared from chemical recycling of degradable polylactic acid (PLA) for development of aliphatic polyester thermoset materials. PLA resin (NatureWork 4042D) was de-polymerized via glycolysis under various conditions to produce PLA glycolysates (GlyPLAs), whose chain-ends mainly consist of hydroxyl groups with \(\bar{M}_{n}\) ranging from 3,600 to 17,000 g/mol. Unsaturated double bonds (DB) were introduced into GlyPLA structures by end-capping with methacrylic anhydride to generate curable LA-precursors. The end-capping efficiency is strongly dependent on the molecular weight of GlyPLAs, where smaller-sized glycolysates produce LA-precursors with higher DB content. Curing behaviors of the precursors are thoroughly examined. DSC and FTIR results show that curing reactions at 140 °C are completed after 2 h for all samples. Results on gel fraction indicate that LA-precursor with \(\bar{M}_{n}\) ~ 3,600 g/mol is the most effective candidate for producing network products with high crosslink density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Helminen AO, Korhonen H, Seppala JV (2003) Crosslinked poly(ester anhydride)s based on poly(ε-caprolactone) and polylactide oligomers. J Polym Sci Part A Polym Chem 41(23):3788–3797

    Article  CAS  Google Scholar 

  2. Ho SM, Young AM (2006) Synthesis, polymerisation and degradation of poly(lactide-co-propylene glycol) dimethacrylate adhesives. Eur Polymer J 42(8):1775–1785

    Article  CAS  Google Scholar 

  3. Korhonen H, Seppala JV (2001) Synthesis of poly(ester-anhydride)s based on poly(ε-caprolactone) prepolymer. J Appl Polym Sci 81(1):176–185

    Article  CAS  Google Scholar 

  4. Helminen A, Korhonen H, Seppala JV (2001) Biodegradable crosslinked polymers based on triethoxysilane terminated polylactide oligomers. Polymer 42(8):3345–3353

    Article  CAS  Google Scholar 

  5. Helminen AO, Korhonen H, Seppala JV (2002) Structure modification and crosslinking of methacrylated polylactide oligomers. J Appl Polym Sci 86(14):3616–3624

    Article  CAS  Google Scholar 

  6. Helminen AO, Korhonen H, Seppala JV (2002) Cross-linked poly (ε-caprolactone/d,l-lactide) copolymers with elastic properties. Macromol Chem Phys 203(18):2630–2639

    Article  CAS  Google Scholar 

  7. Storey RF, Warren SC, Allison CJ, Puckett AD (1997) Methacrylate end-capped poly(d,l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing. Polymer 38(26):6295–6301

    Article  CAS  Google Scholar 

  8. Pardal F, Tersac G (2006) Kinetics of poly(ethylene terephthalate) glycolysis by diethylene glycol. I. Evolution of liquid and solid phases. Polym Degrad Stab 91(12):2840–2847

    Article  CAS  Google Scholar 

  9. Xi G, Lu M, Sun C (2005) Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polym Degrad Stab 87(1):117–120

    Article  CAS  Google Scholar 

  10. Pardal F, Tersac G (2007) Kinetics of poly(ethylene terephthalate) glycolysis by diethylene glycol. Part II: effect of temperature, catalyst and polymer morphology. Polym Degrad Stab 92(4):611–616. doi:10.1016/j.polymdegradstab.2007.01.008

    Article  CAS  Google Scholar 

  11. Suh DJ, Park OO, Yoon KH (2000) The properties of unsaturated polyester based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions. Polymer 41(2):461–466. doi:10.1016/s0032-3861(99)00168-8

    Article  CAS  Google Scholar 

  12. Grzebieniak K, Wesołowski J (2004) Glycolysis of PET waste and the use of glycolysis products in the synthesis of degradable co-polyesters. Fibres and Textiles in Eastern Europe 12(2):21–24

    CAS  Google Scholar 

  13. Saint-Loup R, Jeanmaire T, Robin JJ, Boutevin B (2003) Synthesis of poly(ethylene terephthalate)/poly(ε-caprolactone) copolyesters. Polymer 44(12):3437–3449. doi:10.1016/s0032-3861(03)00257-x

    Article  CAS  Google Scholar 

  14. Namkajorn M, Petchsuk A, Opaprakasit M, Opaprakasit P (2010) Synthesis and characterizations of degradable aliphatic–aromatic copolyesters from lactic acid, dimethyl terephthalate and diol: effects of diol type and monomer feed ratio. Express Polymer Letters 4(7):415–422. doi:10.3144/expresspolymlett.2010.52

    Article  CAS  Google Scholar 

  15. Opaprakasit M, Kongtong W, Petchsuk A, Opaprakasit P (2011) Processability enhancement of poly(lactic acid-coethylene terephthalate) by blending with poly(ethylene co-vinyl acetate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(butylene succinate). Polym Bull 67(2):275–290. doi:10.1007/s00289-010-0421-8

    Article  CAS  Google Scholar 

  16. Opaprakasit M, Petchsuk A, Opaprakasit P, Chongprakobkit S (2009) Effects of synthesis conditions on chemical structures and physical properties of copolyesters from lactic acid, ethylene glycol and dimethyl terephthalate. Express Polymer Letters 3(7):458–468. doi:10.3144/expresspolymlett.2009.56

    Article  CAS  Google Scholar 

  17. Espartero JL, Rashkov I, Li SM, Manolova N, Vert M (1996) NMR analysis of low molecular weight poly(lactic acid)s. Macromolecules 29(10):3535–3539

    Article  CAS  Google Scholar 

  18. Hiltunen K, Härkönen M, Seppälä JV, Väänänen T (1996) Synthesis and characterization of lactic acid based telechelic prepolymers. Macromolecules 29(27):8677–8682

    Article  CAS  Google Scholar 

  19. Opaprakasit P, Opaprakasit M (2008) Thermal properties and crystallization behaviors of polylactide and its enantiomeric blends. Macromol Symp 264(1):113–120. doi:10.1002/masy.200850418

    Article  CAS  Google Scholar 

  20. Opaprakasit P, Opaprakasit M, Tangboriboonrat P (2007) Crystallization of polylactide and its stereocomplex investigated by two-dimensional Fourier transform infrared correlation spectroscopy employing carbonyl overtones. Appl Spectrosc 61(12):1352–1358. doi:10.1366/000370207783292235

    Article  CAS  Google Scholar 

  21. Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, New York

    Google Scholar 

  22. Hu Y, Gamble V, Painter PC, Coleman MM (2002) Functional group accessibility in hydrogen-bonded polymer blends. 4 Cross-linking effects. Macromolecules 35(4):1289–1298. doi:10.1021/ma011793s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this work is partly provided by the Science and Technology Innovation Support Project (Chulalongkorn University) and the National Research University Project of the Commission of Higher Education (CHE), and the Ratchadaphiseksomphot Endowment Fund (AM1029A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Opaprakasit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tounthai, J., Petchsuk, A., Opaprakasit, P. et al. Curable polyester precursors from polylactic acid glycolyzed products. Polym. Bull. 70, 2223–2238 (2013). https://doi.org/10.1007/s00289-013-0940-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0940-1

Keywords

Navigation