Skip to main content

Advertisement

Log in

Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rapamycin is a clinically important macrocyclic polyketide with immunosuppressive activity produced by Streptomyces hygroscopicus. To rationally guide the improvement of rapamycin production, comparative metabolic profiling analysis was performed in this work to investigate the intracellular metabolic changes in S. hygroscopicus U1-6E7 fermentation in medium M1 and derived medium M2. A correlation between the metabolic profiles and rapamycin accumulation was revealed by partial least-squares to latent structures analysis, and 16 key metabolites that most contributed to the metabolism differences and rapamycin production were identified. Most of these metabolites were involved in tricarboxylic acid cycle, fatty acids, and shikimic acid and amino acids metabolism. Based on the analysis of key metabolites changes in the above pathways, corresponding exogenous addition strategies were proposed as follows: 1.0 g/L methyl oleate was added at 0 h; 1.0 g/L lysine was added at 12 h; 0.5 g/L shikimic acid was added at 24 h; 0.5 g/L sodium succinate, 0.1 g/L phenylalanine, 0.1 g/L tryptophan, and 0.1 g/L tyrosine were added at 36 h, successively, and a redesigned fermentation medium (M3) was obtained finally on the basis of M2. The production of rapamycin in M3 was increased by 56.6 % compared with it in M2, reaching 307 mg/L at the end of fermentation (120 h). These results demonstrated that metabolic profiling analysis was a successful method applied in the rational guidance of the production improvement of rapamycin, as well as other industrially or clinically important compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwala SS, Case S (2010) Everolimus (RAD001) in the treatment of advanced renal cell carcinoma: a review. Oncologist 15:236–245

    Article  CAS  Google Scholar 

  • Andexer JN, Kendrew SG, Nur-e-Alam M, Lazos O, Foster TA, Zimmermann AS, Warneck TD, Suthar D, Coates NJ, Koehn FE, Skotnicki JS, Carter GT, Gregory MA, Martin CJ, Moss SJ, Leadlay PF, Wilkinson B (2011) Biosynthesis of the immunosuppressants FK506, FK520, and rapamycin involves a previously undescribed family of enzymes acting on chorismate. Proc Natl Acad Sci USA 108:4776–4781

    Article  CAS  Google Scholar 

  • Baeder WL, Sredy J, Sehgal SN, Chang JY, Adams LM (1992) Rapamycin prevents the onset of insulin-dependent diabetes mellitus (IDDM) in NOD mice. Clin Exp Immunol 89:174–178

    Article  CAS  Google Scholar 

  • Birch A, Leiser A, Robinson JA (1993) Cloning, sequencing, and expression of the gene encoding methylmalonyl-coenzyme A mutase from Streptomyces cinnamonensis. J Bacteriol 175:3511–3519

    CAS  Google Scholar 

  • Chan ECY, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009a) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8:352–361

    Article  CAS  Google Scholar 

  • Chan YA, Podevels AM, Kevany BM, Thomas MG (2009b) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26:90–114

    Article  CAS  Google Scholar 

  • Cheng YR, Fang A, Demain AL (1995a) Effect of amino acids on rapamycin biosynthesis by Streptomyces hygroscopicus. Appl Microbiol Biotechnol 43:1096–1098

    Article  CAS  Google Scholar 

  • Cheng YR, Hauck L, Demain AL (1995b) Phosphate, ammonium, magnesium and iron nutrition of Streptomyces hygroscopicus with respect to rapamycin biosynthesis. J Ind Microbiol 14:424–427

    Article  CAS  Google Scholar 

  • Dayem LC, Carney JR, Santi DV, Pfeifer BA, Khosla C, Kealey JT (2002) Metabolic engineering of a methylmalonyl-CoA mutase–epimerase pathway for complex polyketide biosynthesis in Escherichia coli. Biochemistry 41:5193–5201

    Article  CAS  Google Scholar 

  • Dinesh K, Maharjan S, Dhakal D, Yoo JC, Sohng JK (2012) Effect of different biosynthetic precursors on the production of nargenicin A1 from metabolically engineered Nocardia sp. CS682. J Microbiol Biotechnol 22:1127–1132

    Article  Google Scholar 

  • Douros J, Suffness M (1981) New antitumor substances of natural origin. Cancer Treat Rev 8:63–87

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Dumont FJ, Su Q (1996) Mechanism of action of the immunosuppressant rapamycin. Life Sci 58:373–395

    Article  CAS  Google Scholar 

  • Fang A, Demain AL (1995) Exogenous shikimic acid stimulates rapamycin biosynthesis in Streptomyces hygroscopicus. Folia Microbiol 40:607–610

    Article  CAS  Google Scholar 

  • Gibson F, Pittard J (1968) Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bacteriol Rev 32:465–492

    CAS  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    Article  CAS  Google Scholar 

  • Jung WS, Yoo YJ, Park JW, Park SR, Han AR, Ban YH, Kim EJ, Kim E, Yoon YJ (2011) A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 91:1389–1397

    Article  CAS  Google Scholar 

  • Kahan BD (2000) Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. Lancet 356:194–202

    Article  CAS  Google Scholar 

  • Kassama Y, Xu Y, Dunn WB, Geukens N, Anné J, Goodacre R (2010) Assessment of adaptive focused acoustics versus manual vortex/freeze–thaw for intracellular metabolite extraction from Streptomyces lividans producing recombinant proteins using GC–MS and multi-block principal component analysis. Analyst 135:934–942

    Article  CAS  Google Scholar 

  • Kirdar AO, Green FD, Rathore AS (2008) Application of multivariate data analysis for identification and successful resolution of a root cause for a bioprocessing application. Biotechnol Prog 24:720–726

    Article  CAS  Google Scholar 

  • Korneli C, Bolten CJ, Godard T, Franco-Lara E, Wittmann C (2012) Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions—targeted precursor feeding designed from metabolomics. Biotechnol Bioeng 109:1538–1550

    Article  CAS  Google Scholar 

  • Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283

    Article  Google Scholar 

  • Kwitkowski VE, Prowell TM, Ibrahim A, Farrell AT, Justice R, Mitchell SS, Sridhara R, Pazdur R (2010) FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15:428–435

    Article  CAS  Google Scholar 

  • Lee MS, Kojima I, Demain AL (1997) Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus. J Ind Microbiol Biotechnol 19:83–86

    Article  CAS  Google Scholar 

  • Lu S, Wang J, Niu Y, Yang J, Zhou J, Yuan Y (2012) Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol Bioeng 109:1651–1662

    Article  CAS  Google Scholar 

  • Mo SJ, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36:1473–1482

    Article  CAS  Google Scholar 

  • Mouslim J, David L, Pétel G, Gendraud M (1993) Effect of exogeneous methyl oleate on the time course of some parameters of Streptomyces hygroscopicus NRRL B-1865 culture. Appl Microbiol Biotechnol 39:585–588

    Article  CAS  Google Scholar 

  • Paiva NL, Demain AL, Roberts MF (1991) Incorporation of acetate, propionate, and methionine into rapamycin by Streptomyces hygroscopicus. J Nat Prod 54:167–177

    Article  CAS  Google Scholar 

  • Paiva NL, Demain AL, Roberts MF (1993a) The immediate precursor of the nitrogen-containing ring of rapamycin is free pipecolic acid. Enzyme Microb Technol 15:581–585

    Article  CAS  Google Scholar 

  • Paiva NL, Roberts MF, Demain AL (1993b) The cyclohexane moiety of rapamycin is derived from shikimic acid in Streptomyces hygroscopicus. J Ind Microbiol 12:423–428

    Article  CAS  Google Scholar 

  • Park JW, Jung WS, Park SR, Park BC, Yoon YJ (2007) Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography–electrospray ionization–mass spectrometry. J Mass Spectrom 42:1136–1147

    Article  CAS  Google Scholar 

  • Plaga A, Stümpfel J, Fiedler HP (1989) Determination of carbohydrates in fermentation processes by high-performance liquid chromatography. Appl Microbiol Biotechnol 32:45–49

    Article  CAS  Google Scholar 

  • Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharoplyspora erythrea. J Ind Microbiol Biotechnol 33:600–609

    Article  CAS  Google Scholar 

  • Sakai A, Mitsumori A, Furukawa M, Kinoshita K, Anzai Y, Kato F (2012) Production of a hybrid 16-membered macrolide antibiotic by genetic engineering of Micromonospora sp. TPMA0041. J Ind Microbiol Biotechnol 39:1693–1701

    Article  CAS  Google Scholar 

  • Sallam LAR, El-Refai AF, Osman ME, Hamdy AA, Ahmed EM, Mohamed MA (2010) Some physiological factors affecting rapamycin production by Streptomyces hygroscopicus ATCC 29253. J Am Sci 6:188–194

    Google Scholar 

  • Smart KF, Aggio RBM, Van Houtte RJ, Villas-Bôas SG (2010) Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nat Protoc 5:1709–1729

    Article  CAS  Google Scholar 

  • Soo KH, Park YI (2007) Lipase activity and tacrolimus production in Streptomyces clavuligerus CKD 1119 mutant strains. J Microbiol Biotechnol 17:1638–1644

    Google Scholar 

  • Steiner JP, Connolly MA, Valentine HL, Hamilton GS, Dawson TM, Hester L, Snyder SH (1997) Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat Med 3:421–428

    Article  CAS  Google Scholar 

  • Tremaroli V, Workentine ML, Weljie AM, Vogel HJ, Ceri H, Viti C, Tatti E, Zhang P, Hynes AP, Turner RJ, Zannoni D (2009) Metabolomic investigation of the bacterial response to a metal challenge. Appl Environ Microbiol 75:719–728

    Article  CAS  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic: I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726

    Article  CAS  Google Scholar 

  • Xu Z, Shen W, Chen X, Lin J, Cen P (2005) A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett 27:1135–1140

    Article  CAS  Google Scholar 

  • Yang S, Sadilek M, Lidstrom ME (2010) Streamlined pentafluorophenylpropyl column liquid chromatography–tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria. J Chromatogr A 1217:7401–7410

    Article  CAS  Google Scholar 

  • Zhang W, Reynolds KA (2001) MeaA, a putative coenzyme B12-dependent mutase, provides methylmalonyl coenzyme A for monensin biosynthesis in Streptomyces cinnamonensis. J Bacteriol 183:2071–2080

    Article  CAS  Google Scholar 

  • Zhang W, Yang L, Jiang W, Zhao G, Yang Y, Chiao J (1999) Molecular analysis and heterologous expression of the gene encoding methylmalonyl-coenzyme A mutase from rifamycin SV-producing strain Amycolatopsis mediterranei U32. Appl Biochem Biotechnol 82:209–225

    Article  CAS  Google Scholar 

  • Zhu X, Zhang W, Chen X, Wu H, Duan Y, Xu Z (2010) Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Biotechnol Bioeng 107:506–515

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National 973 Project of China (No. 2013CB733600), the Key Program of National Natural Science Foundation of China (No. 21236005), National Natural Science Foundation of China (No. 21176181), and the Program of Introducing Talents of Discipline to Universities (No. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Huang, D., Qi, H. et al. Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus . Appl Microbiol Biotechnol 97, 5329–5341 (2013). https://doi.org/10.1007/s00253-013-4852-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4852-7

Keywords

Navigation