Skip to main content
Log in

Wear behavior of in situ polymerized carbon nanotube/ultra high molecular weight polyethylene composites

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A carbon nanotube (CNT)/ultra high molecular weight polyethylene (UHMWPE) composite has been prepared through in situ polymerization of ethylene using Ti-based Ziegler-Natta catalysts fixed on the surface of CNT. The in situ polymerization of ethylene produced CNTs regularly encapsulated with UHMWPE, which showed very uniform dispersion of CNTs in the UHMWPE matrix after direct molding. In tensile and ring-on-block wear tests, the in situ polymerized composites showed mechanical and wear properties superior to mechanically blended composites. In particular, the polymerized composite displayed a remarkable suppression of abrasive wear, which was the wear mechanism observed in unfilled UHMWPE and mechanically blended composites; the in situ polymerized composite containing about 10 wt% of CNT had an approximately 2.5 times lower wear rate than unfilled UHMWPE. Moreover, the polymerized composite showed higher thermal conductivity with CNT content when compared to the blended composites, which suggests an easier transfer of heat generated during a severe wear operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 381, 678 (1996).

    Article  CAS  Google Scholar 

  2. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, Nature, 423, 703 (2003).

    Article  CAS  Google Scholar 

  3. J. R. Xiao and J. W. Gillespie Jr, Polym. Eng. Sci., 46, 1051 (2006).

    Article  CAS  Google Scholar 

  4. X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater., 12, 1049 (2000).

    Article  CAS  Google Scholar 

  5. L. Vaisman, H. D. Wagner, and G. Marom, Adv. Colloid Interface Sci., 128-130, 37 (2006).

    Article  CAS  Google Scholar 

  6. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science, 282, 95 (1998).

    Article  CAS  Google Scholar 

  7. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman, P. J. Boul, J. Lozano, J. Liu, R. E. Smalley, R. H. Hauge, and J. L. Margrave, J. Phys. Chem. B, 103, 4318 (1999).

    Article  CAS  Google Scholar 

  8. S. Pekker, J. P. Salvetat, E. Jakab, J. M. Bonard, and L. J. Forro, Phys. Chem. B, 105, 7938 (2001).

    Article  CAS  Google Scholar 

  9. M. A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhou, M. E. Itkis, and R. C. Haddon, Chem. Phys. Lett., 347, 8 (2001).

    Article  CAS  Google Scholar 

  10. C. A. Dyke and J. M. Tour, Chem. Eur. J., 10, 812 (2004).

    Article  CAS  Google Scholar 

  11. Y. H. Jin, H. J. Park, J. Kim, S. S. Im, S. Y. Kwak, and S. Kwak, Macromol. Rapid Commun., 23, 135 (2002).

    Article  CAS  Google Scholar 

  12. L. A. Novokshonova and I. N. Meshkova, Polym. Sci., 36, 517 (1994).

    Google Scholar 

  13. H. J. Park, S. Y. Kwak, and S. Kwak, Macromol. Chem. Phys., 206, 945 (2005).

    Article  CAS  Google Scholar 

  14. S. Kwak, H. J. Park, J. Kim, and Y. H. Jin, J. Korean Ind. End. Chem., 15, 232 (2004).

    CAS  Google Scholar 

  15. D. Srivastava, D. W. Brenner, J. D. Schall, K. D. Ausman, M. Yu, and R. S. Ruoff, J. Phys. Chem. B, 103, 4330 (1999).

    Article  CAS  Google Scholar 

  16. S. Niyogi, M. A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon, Acc. Chem. Res., 35, 1105 (2002).

    Article  CAS  Google Scholar 

  17. R. Blake, Y. K. Gun'ko, J. Coleman, M. Cadek, A. Fonseca, J. B. Nagy, and W. J. Blau, J. Am. Chem. Soc., 126, 10226 (2004).

    Article  CAS  Google Scholar 

  18. C. Vix-Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, and P. Delhaes, J. Phys. Chem. B, 108, 19361 (2004)

    Article  CAS  Google Scholar 

  19. H. P. Boehm, Carbon, 32, 759 (1994).

    Article  CAS  Google Scholar 

  20. P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, Carbon, 44, 3005 (2006).

    Article  CAS  Google Scholar 

  21. T. Belin and F. Epron, Mater. Sci. Eng. B., 119, 105 (2005).

    Article  Google Scholar 

  22. H. Czichos, in Friction and Wear of Polymer Composites, K. Friedrich, Ed., Elsevier, Amsterdam, 1986, p 1.

  23. S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett., 84, 4613 (2000).

    Article  CAS  Google Scholar 

  24. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 87, 215502(1) (2001).

    Google Scholar 

  25. D. J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn, S. G. Wang, Q. Zhou, Q. Wang, and J. Q. Li, Phys. Rev. B, 66, 165440(1) (2002).

    Google Scholar 

  26. M. J. Biercuk, M. C. Liaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, Appl. Phys. Lett., 80, 2767 (2002).

    Article  CAS  Google Scholar 

  27. F. Wu, X. He, Y. Zeng, and H. M. Cheng, Appl. Phys. A, 85, 25 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soonjong Kwak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HJ., Kim, J., Seo, Y. et al. Wear behavior of in situ polymerized carbon nanotube/ultra high molecular weight polyethylene composites. Macromol. Res. 21, 965–970 (2013). https://doi.org/10.1007/s13233-013-1130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1130-6

Keywords

Navigation