Skip to main content
Log in

All-organic PANI–DBSA/PVDF dielectric composites with unique electrical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel all-organic polymer high-dielectric permittivity composites of polyaniline (PANI)/poly (vinylidene fluoride) (PVDF) were prepared by solution method and their dielectric and electric properties were studied over the wide ranges of temperatures and frequencies. To improve the interface bonding between two polymers, dodecylbenzenesulfonic acid (DBSA), a bulky molecule containing a polar head and a long non-polar chain was used both as a surfactant and as dopant in polyaniline (PANI) synthesis. Synthesized conducting PANI–DBSA particles were dispersed in poly(vinylidene fluoride) (PVDF) matrix to form an all-organic composite with different PANI–DBSA concentrations. Near the percolation threshold, the dielectric permittivity of the composites at 100 Hz frequency and room temperature was as high as 170, while the dielectric loss tangent value was as low as 0.9. Like typical percolation system, composites experienced high dielectric permittivity at low filler concentrations. However, their dielectric loss tangent was low enough to match with non-percolative ceramic filler-based polymer composites. Maximum electrical conductivity at 24 wt% of PANI–DBSA was mere 10−6 S/cm, a remarkably low value for percolative-type composites. Increase in the dielectric permittivity of the composites with increase in temperature from 25 to 115 °C for different PANI–DBSA concentrations was always in the same range of 50–60 %. However, the degree of increase in the electrical conductivity with the temperature was more prominent at low filler concentrations compared with high filler concentrations. Distinct electrical and their unique thermal dependence were attributed to an improved interface between the filler and the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stolichnov I, Maksymovych P, Mikheev E, Kalinin SV, Tagantsev AK, Setter N (2012) Phys Rev Lett 108:27603

    Article  Google Scholar 

  2. Li W, Meng Q, Zheng Y, Zhang Z, Xia W, Xu Z (2010) Appl Phys Lett 96:192905

    Article  Google Scholar 

  3. Zhong Z, Cao Q, Jing B, Wang X, Li X, Deng H (2012) Mater Sci Eng B 177:86. doi:10.1016/j.mseb.2011.09.008

    Article  CAS  Google Scholar 

  4. Vangchangyia S, Swatsitang E, Thongbai P et al (2012) J Am Ceram Soc 95:1497. doi:10.1111/j.1551-2916.2012.05147.x

    Article  CAS  Google Scholar 

  5. Dang ZM, Zhou T, Yao SH et al (2009) Adv Mater (Weinheim Ger) 21:2077

    Article  CAS  Google Scholar 

  6. Dang ZM, Yu YF, Xu HP, Bai J (2008) Compos Sci Technol 68:171

    Article  CAS  Google Scholar 

  7. Zak A, Gan W, Majid W, Darroudi M, Velayutham T (2011) Ceram Int 37:1653

    Article  CAS  Google Scholar 

  8. Choi Y, Yoo M-J, Kang H-W, Lee H-G, Han S, Nahm S (2012) J Electroceram 1. doi:10.1007/s10832-012-9706-7

  9. Dang ZM, Lin YQ, Xu HP, Shi CY, Li ST, Bai J (2008) Adv Funct Mater 18:1509

    Article  CAS  Google Scholar 

  10. Dang ZM, Shehzad K, Zha JW, Hussain T, Jun N, Bai J (2011) Jpn J Appl Phys 50:0214

    Google Scholar 

  11. Dang Z-M, Shehzad K, Zha J-W et al (2011) Compos Sci Technol 72:28. doi:10.1016/j.compscitech.2011.08.020

    Article  CAS  Google Scholar 

  12. Sahoo B, Naskar K, Dubey K, Choudhary R, Tripathy D (2012) J Mater Sci 47:2421. doi:10.1007/s10853-012-6782-7

    Article  CAS  Google Scholar 

  13. Yao SH, Dang ZM, Jiang MJ, Xu HP, Bai J (2007) Appl Phys Lett 91:212901

    Article  Google Scholar 

  14. Yao SH, Dang ZM, Xu HP, Jiang MJ, Bai J (2008) Appl Phys Lett 92:082902

    Article  Google Scholar 

  15. Yao SH, Yuan JK, Zhou T, Dang ZM, Bai J (2011) J Phys Chem C 115:20011

    Article  CAS  Google Scholar 

  16. Shehzad K, D Zhimin, MN Ahmad et al. (2012) Carbon. doi:http://dx.doi.org/10.1016/j.carbon.2012.10.068

  17. Zha J-W, Shehzad K, Li W-K, Dang Z-M (2013) J Appl Phys 113:014102

    Article  Google Scholar 

  18. Shang S, Wei Z, TAO X (2012) RSC Adv 2:4675

    Article  CAS  Google Scholar 

  19. Fang FF, Liu YD, Lee IS, Choi HJ (2011) RSC Adv 1:1026

    Article  CAS  Google Scholar 

  20. Huang C, Zhang Q (2004) Adv Funct Mater 14:501

    Article  CAS  Google Scholar 

  21. Huang C, Zhang Q, Debotton G, Bhattacharya K (2004) Appl Phys Lett 84:4391

    Article  CAS  Google Scholar 

  22. Zhou T, Zha JW, Hou Y, Wang D, Zhao J, Dang ZM (2011) ACS Appl Mater Interfaces 3:4557

    Article  CAS  Google Scholar 

  23. Yuan JK, Dang ZM, Yao SH et al (2010) J Mater Chem 20:2441

    Article  CAS  Google Scholar 

  24. Huang C, Zhang Q, Su J (2003) Appl Phys Lett 82:3502

    Article  CAS  Google Scholar 

  25. He X, Du J, Ying Z, Cheng H (2005) Appl Phys Lett 86:062112

    Article  Google Scholar 

  26. Babazadeh M (2009) J Appl Polym Sci 113:3980

    Article  CAS  Google Scholar 

  27. Bormashenko Y, Pogreb R, Stanevsky O, Bormashenko E (2004) Polym Test 23:791. doi:10.1016/j.polymertesting.2004.04.001

    Article  CAS  Google Scholar 

  28. Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Adv Mater 19:852. doi:10.1002/adma.200600703

    Article  CAS  Google Scholar 

  29. Dang ZM, Xie D, Shi CY (2007) Appl Phys Lett 91:222902

    Article  Google Scholar 

  30. Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M (2008) J Eur Ceram Soc 28:117. doi:10.1016/j.jeurceramsoc.2007.05.007

    Article  CAS  Google Scholar 

  31. Deng Y, Zhang Y, Xiang Y, Wang G, Xu H (2009) J Mater Chem 19:2058

    Article  CAS  Google Scholar 

  32. Ce-Wen N (1993) Prog Mater Sci 37:1

    Article  Google Scholar 

  33. Chanmal C, Jog J (2012) Characterization Techniques for Polymer Nanocomposites: 167

  34. Li C, Thostenson ET, Chou TW (2007) Appl Phys Lett 91:223114

    Article  Google Scholar 

  35. Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH (2012) Prog Mater Sci 57:660

    Article  CAS  Google Scholar 

  36. Xu HP, Dang ZM, Bing NC, Wu YH, Yang DD (2010) J Appl Phys 107:034105

    Article  Google Scholar 

  37. Xu HP, Dang ZM (2007) Chem Phys Lett 438:196

    Article  CAS  Google Scholar 

  38. Pötschke P, Dudkin SM, Alig I (2003) Polymer 44:5023

    Article  Google Scholar 

  39. Wang L, Dang ZM (2005) Appl Phys Lett 87:042903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurram Shehzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shehzad, K., Ul-Haq, A., Ahmad, S. et al. All-organic PANI–DBSA/PVDF dielectric composites with unique electrical properties. J Mater Sci 48, 3737–3744 (2013). https://doi.org/10.1007/s10853-013-7172-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7172-5

Keywords

Navigation