Skip to main content
Log in

A new aluminum-based metal matrix composite reinforced with cobalt ferrite magnetic nanoparticle

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new composite with cobalt ferrite magnetic nanoparticle dispersed in an aluminum matrix has been prepared using the ball-milling technique followed by compaction and sintering. Our efforts were largely focused on investigating the contribution of cobalt ferrite to the enhancement of structural, mechanical and magnetic properties of aluminum. Incorporation of 1–10 weight (wt)% of nanosized cobalt ferrite into the aluminum matrix could affect remarkable change in mechanical properties. Enhancement of hardness value, elastic modulus, and compressive strength was observed in the case of cobalt ferrite-incorporated aluminum matrix as compared to the pure aluminum sample. Incorporation of cobalt ferrite could impart considerable improvement of magnetization value of the aluminum matrix with a saturation magnetization of 17.07 emu/g for the aluminum sample reinforced with 10 wt% of cobalt ferrite. A decrease in coercive force in the sample arising from the increase in surface effects and inter-particle interaction between the ferromagnetic cobalt ferrite and soft phases in the matrix was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  CAS  Google Scholar 

  2. Suryanarayana C (1995) Nanocrystalline material. Intl Mat Rev 40:41–64

    Article  CAS  Google Scholar 

  3. Cohen JB (1992) Early stages of solute distribution below a transition temperature. Metall Trans A: Phys Metal Mater Sci 23:2685–2697

    Article  Google Scholar 

  4. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626

    Article  CAS  Google Scholar 

  5. Birringer R (1989) Nanocrystalline materials. Mater Sci Eng A 117:33–43

    Article  Google Scholar 

  6. Lloyd DJ (1994) Particle reinforced aluminum and magnesium matrix composites. Int Mater Rev 39:1–23

    Article  CAS  Google Scholar 

  7. Song JI, Bong HD, Han KS (1995) Characterization of mechanical and wear properties of Al/Al2O3/C hybrid metal matrix composites. Scripta Metal Mater 33:1307–1313

    Article  CAS  Google Scholar 

  8. Guo MLT, Tsao C-YA (2000) Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Compos Sci Technol 60:65–74

    Article  CAS  Google Scholar 

  9. Gurcan AB, Baker TN (1995) Wear behaviour of AA6061 aluminium alloy and its composites. Wear 188:185–191

    Article  CAS  Google Scholar 

  10. Gao X, Rodriguez BJ, Liu L, Birajdar B, Pantel D, Ziese M, Alexe M, Hesse D (2010) Microstructure and properties of well-ordered multiferroic Pb(Zr, Ti)O3/CoFe2O4 nanocomposites. ACS Nano 4:1099–1107

    Article  CAS  Google Scholar 

  11. Zhai C, Li Y, Wang X, Xu L, Wei S (2010) Fabrication of Fe-based Al2O3-TiC ceramic/steel composite by self-propagation high-temperature synthesis. Adv Mater Res 105–106

  12. Shen X, Zhou Z, Song F, Meng X (2010) Synthesis and magnetic properties of nanocomposite Ni12x Co x Fe2O4–BaTiO3 fibers by organic gel-thermal decomposition process. J Sol-Gel Sci Technol 53:405–411

    Article  CAS  Google Scholar 

  13. Zhen L, Gong YX, Jiang JT, Xu CY, Shao WZ, Liu P, Tang J (2011) Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber. J Appl Phys 109:07A332

    Article  Google Scholar 

  14. Flores-Campos R, Mendoza-Ruiz DC, Amézaga-Madrid P, Estrada-Guel I, Miki-Yoshida M, Herrera-Ramírez JM, Martínez-Sánchez R (2010) Microstructural and mechanical characterization in 7075 aluminum alloy reinforced by silver nanoparticles dispersion. J Alloys Compd 495:394–398

    Article  CAS  Google Scholar 

  15. Gupta M, Lai MO, Lim CYH (2006) Development of a novel hybrid aluminum-based composite with enhanced properties. J Mater Proc Technol 176:191–199

    Article  CAS  Google Scholar 

  16. Ganesh VV, Lee CK, Gupta M (2002) Enhancing the tensile modulus and strength of an aluminum alloy using interconnected reinforcement methodology. Mater Sci Eng A 333:193–198

    Article  Google Scholar 

  17. El-Okr MM, Salem MA, Salim MS, El-Okr RM, Ashoush M, Talaat HM (2011) Synthesis of cobalt ferrite nano-particles and their magnetic characterization. J Magn Magn Mater 323:920–926

    Article  CAS  Google Scholar 

  18. Borgohain C, Senapati KK, Mishra D, Sarma KC, Phukan P (2010) A new CoFe2O4–Cr2O3–SiO2 fluorescent magnetic nanocomposite. Nanoscale 2:2250–2256

    Article  CAS  Google Scholar 

  19. Chawla N, Chawla KK (2006) Metal matrix composites. Springer, New York

    Google Scholar 

  20. Rohatgi PK, Guo R, Keshavarnam BN, Golden DM (1995) Cast aluminum-fly ash composites for engineering applications. Am Foundry Soc Trans 10:575–586

    Google Scholar 

  21. Senapati KK, Borgohain C, Phukan P (2011) Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J Mol Catal A: Chem 339:24–31

    Article  CAS  Google Scholar 

  22. Farges G, Degout D (1989) Interpretation of the indentation size effect in vickers microhardness measurements-absolute hardness of materials. Thin Solid Films 181:365–374

    Article  Google Scholar 

  23. Cullity BD (1978) Elements of X-ray diffraction, reading. Addision-Wesly Publishing Company, Massachusetts

    Google Scholar 

  24. Kientzl I, Orbulov IN, Dobránszky J, Németh A (2006) Mechanical behaviour Al-matrix composite wires in double composite structures. Adv Sci Technol 50:147–152

    Article  CAS  Google Scholar 

  25. Bruck HA, Rabin BH (1999) Evaluating microstructural and damage effects in rule of mixtures predictions of the mechanical properties of Ni-Al2O3 composites for use in modeling functionally graded materials. J Mater Sci 34:2241–2251. doi:10.1023/A:1004509220648

    Article  CAS  Google Scholar 

  26. Singhal S, Barthwal SK, Chandra K (2006) XRD, magnetic and Mössbauer spectral studies of nano size aluminum substituted cobalt ferrites (CoAl x Fe2−x O4). J Magn Magn Mater 306:233–240

    Article  CAS  Google Scholar 

  27. Callej FJB, Fakirov S (2007) Microhardness of polymers. Cambridge University Press, Cambridge

    Google Scholar 

  28. Li G-J, Ren R-M, Huang X–X, Guo J-K (2004) Microstructure and mechanical properties of Al2O3/Ni composites. Cer Int 30:977–982

    Article  CAS  Google Scholar 

  29. Lee IS, Hsu CJ, Chen CF, Ho NJ, Kao PW (2011) Particle-reinforced aluminum matrix composites produced from powder mixtures via friction stir processing. Comp Sci Technol 71:693–698

    Google Scholar 

  30. Shen Y-L, Chawla N (2001) On the correlation between hardness and tensile strength in particle reinforced metal matrix composites. Mater Sci Engg A297:44–47

    CAS  Google Scholar 

  31. Li HQ, Ebrahimi F (2005) Ductile-to-brittle transition in nanocrystalline metals. Adv Mater 17:1969–1972

    Article  CAS  Google Scholar 

  32. Wei RP (2010) Fracture mechanics. Cambridge University Press, New York

    Google Scholar 

  33. Davis JR (1993) Aluminum and aluminum alloys. In: Davis JR & Associates (eds) Handbook Committee, ASM International

  34. Mohan KS, Venudhar YC (1999) Thermal expansion of Li-Co mixed ferrites. J Mat Sci Letts 18:299–301

    Article  CAS  Google Scholar 

  35. Korhonen MA, LaFontaine WR, Børgesen P, Li C-Y (1991) Stress induced nucleation of voids in narrow aluminum-based metallization on silicon substrates. J Appl Phys 70:6774–6781

    Article  CAS  Google Scholar 

  36. Taya M, Hayashi S, Kobayashi S, Yoon HS (1990) Toughening of a particulate reinforced ceramic matrix composite by thermal residual stress. J Am Cer Soc 73:1382–1391

    Article  CAS  Google Scholar 

  37. Nakagomi F, da Silva SW, Garg VK, Oliveira AC, Morais PC, Júnior AF, Lima ECD (2007) The influence of cobalt population on the structural properties of Co x Fe3−x O4. J Appl Phys 101:09M514–09M517

    Article  Google Scholar 

  38. Limaye MV, Singh SB, Date SK, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary RJ, Kulkarni SK (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113:9070–9076

    Article  CAS  Google Scholar 

  39. Gubin SP (2009) Magnetic nanoparticle. Wiley-VCH Verlag GmbH & Co, Germany

    Book  Google Scholar 

  40. Chikazumi S (1977) Physics of ferromagnetism. Oxford University Press, Oxford

    Google Scholar 

  41. Raghavender AT, Kulkarni RG, Jadhav KM (2010) Magnetic properties of mixed cobalt-aluminum ferrite nanoparticles. Chinese J Phys 48:512–522

    CAS  Google Scholar 

  42. Vestal CR, Song Q, Zhang ZJ (2004) Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J Phys Chem B 108:18222–18227

    Article  CAS  Google Scholar 

  43. Hansen MF, Mørup SJ (1998) Models for the dynamics of interacting magnetic nanoparticles. J Magn Magn Mater 184:L262–L274

    Article  Google Scholar 

  44. Fiorani D (2005) Surface effects in magnetic nanoparticle. Spinger Science-Buisness Media, Boston

    Book  Google Scholar 

  45. Kumar L, Kar M (2011) Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J Magn Magn Mater 323:2042–2048

    Article  CAS  Google Scholar 

  46. Aghav PS, Dhage VN, Mane ML, Shengule DR, Dorik RG, Jadhav KM (2011) Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol-gel auto combustion process. Phys B Condens Matter 406:4350–4354

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from DST, India (Grant No.SR/NM/NS-18/2011), is gratefully acknowledged. The authors would also like to acknowledge the support from IIT Guwahati for analytical facilities during the course of investigations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. C. Sarma or Prodeep Phukan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgohain, C., Acharyya, K., Sarma, S. et al. A new aluminum-based metal matrix composite reinforced with cobalt ferrite magnetic nanoparticle. J Mater Sci 48, 162–171 (2013). https://doi.org/10.1007/s10853-012-6724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6724-4

Keywords

Navigation