Skip to main content
Log in

Ethylene Epoxidation over Alumina- and Silica-Supported Silver Catalysts in Low-Temperature AC Dielectric Barrier Discharge

  • original paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this work, ethylene epoxidation reaction for ethylene oxide production over silver catalysts loaded on two different supports (silica and alumina particles) in a low-temperature AC dielectric barrier discharge (DBD) reactor was investigated. The DBD plasma system was operated under the following base conditions: an O2/C2H4 feed molar ratio of 1/4, a total feed flow rate of 50 cm3/min, an electrode gap distance of 0.7 cm, an input frequency of 500 Hz, and an applied voltage of 19 kV. From the results, the presence of silver catalysts improved the ethylene oxide production performance. The silica support interestingly provided a higher ethylene oxide selectivity than the alumina support. The optimum Ag loading on the silica support was found to be 20 wt%, exhibiting the highest ethylene oxide selectivity of 30.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lefort TE (1931) French Patent 729952

  2. http://en.wikipedia.org/wiki/Ethylene_oxide (accessed on December 10, 2010)

  3. http://www.labsafety.com/refinfo/ezfacts/ezf176.htm (accessed on December 10, 2010)

  4. Campbell CT, Paffett MT (1984) Appl Surf Sci 19:28

    Article  ADS  Google Scholar 

  5. Campbell CT, Koel BE (1985) J Catal 92:272

    Article  Google Scholar 

  6. Tan SA, Grant RB, Lambert RM (1986) J Catal 100:383

    Article  Google Scholar 

  7. Tories N, Verikios XE (1987) J Catal 108:161

    Article  Google Scholar 

  8. Jun Y, Jingfa D, Xiaohong Y, Shi Z (1992) Appl Catal A Gen 92:73

    Article  Google Scholar 

  9. Mao CF, Vannice MA (1995) Appl Catal A 122:61

    Article  Google Scholar 

  10. Jankowick JT, Barteau MA (2005) J Catal 236:379

    Article  Google Scholar 

  11. Dellamorte JC, Lauterback J, Barteau MA (2007) Catal Today 120:182

    Article  Google Scholar 

  12. Rojluechi S, Chavadej S, Schwank JW, Meeyoo V (2007) Catal Commun 1:57

    Article  Google Scholar 

  13. Marta CN, de Carvalho A, Passos FB, Schmal M (2007) J Catal 248:124

    Article  Google Scholar 

  14. Chavadej S, Tansuwan A, Sreethawong T (2008) Plasma Chem Plasma Process 28:643

    Article  Google Scholar 

  15. Sreethawong T, Suwannabart T, Chavadej S (2009) Chem Eng J 115:396

    Article  Google Scholar 

  16. Seyedmonir SR, Plishchke JK, Vannic MA, Young MW (1990) J Catal 123:534

    Article  Google Scholar 

  17. Bradford MCJ, Fuentes DX (2002) Catal Commun 3:51

    Article  Google Scholar 

  18. Rojluechai S, Chavadej S, Schwank JW, Meeyoo V (2006) J Chem Eng Jpn 39:321

    Article  Google Scholar 

  19. Lee JK, Verykbs XE, Pitchai R (1989) Appl Catal 50:171

    Article  Google Scholar 

  20. Yong YS, Kennedy EM, Cant NM (1991) Appl Catal 76:31

    Article  Google Scholar 

  21. Rosacha LA, Anderson GK, Bechtold LA, Coogan JJ, Heck HG, Kang M, McCulla WH, Tennant RA, Wantuck PJ, NATO ASI series (1993) 34(part B)

  22. Suhr H, Schmid H, Pfeundschuh H, Lacocca D (1984) Plasma Chem Plasma Process 4:285

    Article  Google Scholar 

  23. Heintze M, Pietruszka B (2004) Catal Today 87:21

    Article  Google Scholar 

  24. Sreethawong T, Suwannabart T, Chavadej S (2008) Plasma Chem Plasma Process 28:629

    Article  Google Scholar 

  25. Chavadej S, Kiattubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) J Mol Catal A: Chem 263:128

    Article  Google Scholar 

  26. Sreethawong T, Permsin N, Suttikul T, Chavadej S (2010) Plasma Chem Plasma Process 30:503

    Article  Google Scholar 

  27. Cullity BD (1978) Element of x-ray diffraction. Addison-Wesley, Massachusetts

    Google Scholar 

  28. Apostolos PF, Kostas ST (2007) Catal Today 127:148

    Article  Google Scholar 

  29. Oyama ST (2008) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Oxford

    Google Scholar 

  30. http://accuratus.com/alumax.html (accessed on December 10, 2010)

  31. Volckmar CE, Bron M, Bentrup U, Martin A, Claus P (2009) J Catal 261:1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge Dudsadeepipat Scholarship, Chulalongkorn University, Thailand; the Research Unit of Petrochemical and Environmental Catalysis under the Ratchadapisek Somphot Endowment Fund, Chulalongkorn University, Thailand; and Center for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaeth Chavadej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suttikul, T., Sreethawong, T., Sekiguchi, H. et al. Ethylene Epoxidation over Alumina- and Silica-Supported Silver Catalysts in Low-Temperature AC Dielectric Barrier Discharge. Plasma Chem Plasma Process 31, 273–290 (2011). https://doi.org/10.1007/s11090-010-9280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9280-1

Keywords

Navigation