환경보호와 관련한 도료와 도장기술

대한페인트.잉크(주) 기술연구소
책임연구원 조영호
1. 서 론

2. 국제 환경 보호활동

3. 국제 환경 개발회의 (UNCED)
 3.1 리오선언
 3.2 아젠다 21 (21세기에 대한 행동계획)
 3.3 지구온난화 방지조약

4. 대기오염 및 온난화 메카니즘
 4.1 VOC (휘발성 유기화합물 : Volatile Organic Compounds)
 4.2 공화적 스모그의 생성 메카니즘
 4.3 대기중의 VOC 거동
 4.4 성층권의 오존층 파괴
 4.5 지구온난화

5. 도료.도장부문의 과제
 5.1 특정 화학 가스에 의한 오존층 파괴
 5.2 CO2 가스에 의한 온난화
 5.3 산 성 비
 5.4 해양오염
5.5 산업폐기물
5.6 공정의 합리화
5.7 도장품질 및 성능의 향상
5.8 규격화
5.9 주요 도료분야별 대응
 (1) 중방식 도료
 (2) 자동차용 도료
 (3) PLASTIC용 도료

6. 주목되는 새로운 기술
 6.1 저온해리형 Blocked isocyanate
 6.2 Microgel
 6.3 복합성형 기술
 6.4 저온경화형 수용성 도료

7. 결론

※ 참고문헌
1. 서론

지구상의 환경문제는 인구증가와 산업활동이 활발하게 진행됨에 따라 대기오염이나 환경파괴가 급속도로 진행되어 이대로 계속 방치하게 되면 인류의 존망에 중대한 사태가 벌어지게 될 것이다. 국경을 초월해서 오염물질이 침입하는 대기오염이나 화천 및 해양의 오염은 국가간의 정치 문제로까지 발전되는 예가 종종 생겨나고 있다. 따라서 전세계 각 국가들의 “지구환경보호” 차원의 대책 수립과 관련한 목소리가 고조되고 있으며, 지구환경 파괴의 원인제거 및 발생예방 외 오염된 지구환경의 재생에 관한 국가간의 협력 필요성이 크게 대두되고 있다. ①

1992년 6월에 브라질 리오데자네이로에서 열린 국제환경개발회의 에서는 Agenda 21(21세기의 행동계획)이 제택되었는데, 이것은 대기보전, 유해화학물질 및 유해 폐기물의 관리등에 관한 것으로 전세계의 산업계가 환경에 대해서 적극적으로 보다 깨끗한 제품의 개발에 앞장서야 한다는 것을 인식하고, 기업의 적극적인 참여와 공헌을 부르짖고 있다. 세계 각국 도로 Maker의 도로 생산량은 2258만톤(1989년)으로 매년 약 3%씩 증가하고 있으며, 1989년 생산량으로 비교할 때 미국이 513만톤으로 제일많고 유럽이 503만톤, 일본이 213만톤으로 이들 3개국이 세계 도로생산량의 54.4%를 차지하고 있다. ② 우리나라의 도로생산량은 1991년 이후 연간의 성장률이 15.8%의 고도 성장을 해오고 있으며, 1992년 생산량은 76만 8000톤에 이르고 있다. ③ 이와같이 매년 증가되고 있는 도로의 생산량은 도로구성분중에 포함되어 있는 유기취발물질(VOC)의 사용량이 따라서 증가하게 되며, 또 도로공사시 발생되는 미도착 도로양의 증가, 소재전처리와 관련한 처리제 및 유기용제의 사용량도 따라서 증가되고 있음을 알 수 있는것이다.

또한 도로중에 함유된 유기취발물질이외에 방정효과를 내는 크롬(Cr), 납(Pb)계 등의
그림 1. 사람의 활동과 환경오염에 의한 결과
안료와 유기·무기계 안료 및 전색제인 합성수지로 배출을 수 없는 지구환경오염의 원인물질이 된다. 따라서 세계 각국의 도료 MAKER에서도 지구환경보호의 근절에서 21세기를 향한 새로운 형태의 도료개발을 각 도료유형 및 용도별로 진행하고 있으며, 도료가 가지고 있는 오늘의 과제는 환경대책, 도료제도 및 도장공정의 탈리화와 도막성능(기능)의 향상으로 집약되고 있다. 환경대책의 대표적인 것으로서는 도료중에 함유된 유기취발물질(VOC)의 삭감과 중금속의 사용제제이며, 도장공정에서 대표되는 경화 SYSTEM의 전환으로 경화온도의 하향 조정에 의한 연소연료의 양을 줄임으로써 배출가스의 발생을 억제하는 노력과 도장방법의 개선에 의한 도료의 손실을 최소화 하는 것등을 들 수 있다. 이러한 근절에서 세계 환경관련 각종회의 및 규제 음직임과 그것에 대응하는 새로운 도료 및 도장에 필요한 신기술의 동향등에 대해서 기술하려 한다.

2. 국제환경보호활동(5)(6)

산업공해의 시발은 1950년대 미국의 체절도시 피츠버그에서 발생한 “빨강계 흐려진 하늘”로 상정되는 대기 오염으로부터 시작되었으나, 이후 로스앤젤레스(LA)에서 눈 음자국하는 종래와는 다른 대기오염이 빈발한 원인이 자동차의 배기가스와 자외선에 의한 화학반응에 기인한다고 판명되면서, 세계에서 처음으로 1966년 “Rub 66”이라고 하는 탄화수소계 용제를 중심으로한 화학 Smog 원인물질의 규제가 시작되었다. 이후 대기오염이 전 미국으로 확산되면서 1969년 대기정화법(CAA: Clean air act)이 제정되었다. 이후 경제개발이 급속히 확산된 유럽 및 일본에서도 이와같은 대기오염이 심각하게 발생되었는데 주 오염물질은 화석연료의 연소에 의한 미연, 일산화탄소, 질소화합물, 아황산가스 및 미연소의 탄화수소등이 원인 물질의 주역이었다. 이 오염된 공기는 바람에 실려 국경을 넘어 태국에 피해를 주게 되었고 따라서 환경오염 문제는 국
제도화되기 시작하였다.

표 1. 연도별 국제환경 보호 활동

<table>
<thead>
<tr>
<th>연</th>
<th>내용</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>국제 인간환경회의 (스톡홀름 선언)</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>국제 환경계획 (UNEP) 발족</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>런던, 데모리 협약 (해양폐기물 투기방지)</td>
<td></td>
</tr>
<tr>
<td>1972</td>
<td>구주 대기오염 모니터링 프로그램 (EMEP) 발족</td>
<td></td>
</tr>
<tr>
<td>1980</td>
<td>장거리 원성 대기오염 조약 (주네브)</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>성층권 오존층 보호를 위한 원조약 (UNEP, OECD)</td>
<td></td>
</tr>
</tbody>
</table>
1987 | 장거리 연평 SO₂에 관한 의정서 (스톡홀름)
1987 | 국제무역의 유해물질에 관한 정보교환 런던가이드라인 (UNEP)
1987 | 오존층 파괴물질에 관한 몬트리올 의정서
1987 | 국제 환경특별위원회, 도끼회합보고서 “지속적 개발을 향하여”
1988 | 장거리 연평 NO₂에 관한 의정서 (소피아)
1988 | WMO (세계기후기구)/ UNEP 기후변화에 관한 정부간 협의 (IPCC)
1989 | 성층권 오존층 보호위한 몬트리올 의정서
1990 | 대량생산 화학물질의 안전점검개시 (OECD)
1990 | 직장에서의 화학물질의 사용안전에 관한 조약 (ILO), MSDS (제조자안전 DATA)에 연결
1991 | ICC (국제상업회의소) “지속가능한 개발의 위한 산업개발장” 발표
1992 | 장거리 연평 VOC등의 식감에 관한 의정서 (주네브)
1992 | 국제환경개발회의 : UNCED (브라질 리오데자네이로)

- 리오선언
- 아-validate 21 (21세기인의 행동계획)
- 지구온난화 방지조약
- 생물 다양성 조약
- 삼림원축성명
- 포괄적 지구환경문제의 국제기구로서 “지속가능한 개발 위원회” 신설

3. 국제환경 개발회의 (UNCED)

1988년 런던의 세계기후기구(WMO)회의 발표에서 세계기후의 변동예측과 그것이 미치는 피해의 중대함을 역설 세계에 충격을 주었는데, 그 내용은 대기온도의 상승경향은 그 시기와 별도로 남극 및 북극의 얼음이 용해하여 해면이 상승, 이는 광대한 지역이
물에 잠기거나, 내폭의 건조, 사막화의 확대가 예측된다는 것이며, 대기권에 은실효과
을 초래하는 기체(주로 이산화탄소가스, 메탄, 프론)의 농도증가가 원인이고, 이것은 "인간의 활동"에 의한 것 때문이라는 것으로 그후 세계각국은 "지속하는 개발과 환경
보호의 양립"을 탐구하는 노력을 기울여 왔다.

1992년 브라질 리오데자네이로에서 개최된 국제환경 개발회의의 성과는 리오선언, 아젠
다 21과 기후변등에 관한 구조조약, 삼림원칙 성명을 제택한 것이었다.

3.1 리오선언 (8)

리오선언은 지속하는 개발과 환경에 대하여 7가지 행동원칙에 합의한 것이다.

그 내용을 요약하면 다음과 같다.

제 1 : 개발과 환경조화 위한 국제적 구조확립
 * 빈곤 박멸선언
 * 선진국 지구환경파괴 유발 책임

제 2 : 환경 오디 확립
 * 발전도상국에 대한 자금 및 원조의지 통일
 (일본 : 1조화 / 5년간 기부약속)

제 3 : 현재의 "지속불가능한 생산과소비패턴"의 감소 또는 제거 및 인구억제의
 증대성 확인

제 4 : 지구규모의 환경문제를 혁신적 기술에 의해 해결, 시점의 필요성확인 및
 심각한 불가역적인 환경문제에 대하여 과학적 확실성 결여 이유로 대응을
 기 불가

제 5 : 환경대책의 일체에 있어 일부 국가에서 적용하는 환경기준은, 특히 개발도
 상국에서 부적절한 또한 부당한 경제적, 사회적 비용이 수반될 가능성이
 있다고 확인함.

제 6 : 환경문제로 이로하여 부당한 무여정책의 실시 불가

제 7 : 미래의 태마 확인
 * 환경성 등의 자급문제, 에너지문제 (산업국과 소비국과의 합의)
 * 아프리카 제국들의 사막화방지 조약 요구
3.2 이션다 21 (21세기에 대한 행동계획) 9)

리오선언을 수렴하여 40개 분야에 미치는 행동계획이 설정되었다. 이는 세계 각 나라들의 정부는 산업계가 해야할 역할에 대하여 산업계와 협의하여 환경상 보다 건전한 생산촉진을 위한 적절한 경제조치 및 법적, 행정적 규제조치를 명확히하고 실시해야 한다는 것이며, 정부, 산업계, 학회, 국제기관에 의한 가격구조에 있어 환경비용이 내재되어 있는것을 고려하여, 산업계에 의한 환경에 건전한 생산정책을 채택하도록 명문화 한 것이다.

이에 대하여 산업계의 방침은 각 분야별로 다음과 같이 내세워지고 있다.

(1) 에너지 효율이 높은 기술 채용

(2) 생산과 소비패턴의 변혁 (환경부하를 경감하고 기대를 만족시키는 소비와 생산 산으로의 변혁)

(3) 유해화학물질의 환경적으로 건전한 관리

 - 화학물질 위험성의 국제적 평가
 - 화학물질의 국제적 분류, 라벨표시
 - 화학물질 위험성의 기술정보교환
 - 위험 사고예방의 추진 (사용제한, 규제, 대체개발)

 각국의 위험 화학물질의 관리강화

위에 열거한 사항들은 국가, 행정기관, 학회, 기업등이 모두 협력하여 추진 하는 것을 말하며 구체적인 대응 방법은 MSDS(제조자 안전 DATA SHEET)의 출고, 안전정보 제공 및 사내교육의 강화등이 열거되고 있다.

3.3 지구온난화 방지조약 10)

통상 이문제에 대한 국제조약화는 먼저 조약을 체결하고 구체적인 규제 내용을
정서로 발표시켰으나, 이번에는 조약으로서 규정서의 내용까지를 입각하여 계획 추진되었다. 이에 대하여 각 나라 각자의 의전으로서
(1) 주 인인이 되는 CO2는 경제발전과 밀접히 관련되기 때문에 개발도상국은 선진\n국의 책임을 추구하고, 개발도상국 자신의 발전에 대해 저해 받을 것을 우려\n했다.
(2) EC, 일본의 CO2 배출계획 목표로서 2000년까지는 1990년 수준으로 유지하는 안\n을 제안했다.
(3) 세계의 CO2의 ¼을 배출하는 미국은 CO2 배출과 지구환경 변동과의 관계에 대\n하여 과학적인 근거가 부족하므로 규제 실시는 시기상조 입을 제안했다.
(4) OPEC (산유국기구)는 수요감퇴의 걱정으로, 사우디아라비아는 CO2, 에너지라는\n문제의 석재를 요구하였다.
그 결과 2000년 까지는 온실 효과가스에 대한 사항을 완결으로 되돌리고, 종합적인\n대책이 이에 진행하고 있는 그 밖의 국제조약과의 연계라고 하는 점에서 종합적 대\n책의 입환이라는 것으로 중요시 되었으며, 대응추진 기관으로서 경제사회 이사회\n의 하부에 "지속가능한 개발위원회"를 설치했다.

4. 대기오염 및 온난화의 메커니즘(11)

환경오염은 대기, 수질의 순환계, 동식물의 생태계, 토양등 여러가지로 영향을 미치\n지만 본고에서는 온난화에 관계있는 대기오염을 중심으로 도장기술과의 관계를 설명하\n고자 한다. 그 중요한 테마는 다음의 3가지가 될것이다.
(1) 장거리 국경을 넘은 대기오염 : 대류권의 산성화 (산성비 : SOx, NOx 및 강화작\n산화성 물질)
(2) 성충권의 오존층 파괴
(3) 지구 온난화

그리고 도장작업에서 대기중에 배출되는 VOC와 탄산가스(연료연소 및 에너지소비)와의 관련으로 그 메카니즘에 대하여 고찰하여 보기로 한다.

4.1 VOC (휘발성 유기화합물: Volatile Organic Compounds) (11)

VOC란 휘발성 유기화합물(Volatile Organic Compounds)을 통칭하는 용어로 많이 사용되고 있지만 개개의 항성물의 의미하기도 한다. 이 VOC에 해당하는 물질은

"탄화수소류" 가 대표적인 것으로 널리 의미에서 메탄, 프로판을 비롯하여 할로겐화탄화수소(CFC), 알콜, 에스텔, 캐론, 알데히드, 질소탄화수소(암포함) 및 이황화탄화수소(암황탄화수소)등도 VOC로 볼 수 있다.

공기중에 배출된 VOC가 초래하는 환경공해 역할은 자기학 산화성 물질의 원인이 되는것 이외에도 그 자체로 발암성, 유독성 잠재와 약취의 원인 물질이라는 것이다. VOC가 초래하는 영향을 열거하면 다음과 같다.

(1) 지상 대기형 산화성 물질의 성성으로 인한 건강피해 및 대기의 산성화

(2) 대류권 오존 농도의 증가 (지구온난화)

(3) 상부층권, 오존농도의 파괴인자 (오존흡발생→건강피해)

(4) 하층 산화권, 대류권 오존농도의 감소 (지구온난화에 대한 무작용)

(5) 최종 도달 물질인 CO2의 온실효과

(6) 발암성, 유독성, 약취성

4.2 광화학 스모그의 생성 메카니즘 (11)

1953년에 하켄.슈미트 박사에 의하여 광화학 스모그 발생 메카니즘이 해명되었는데 이것은 VOC와 NOx 가스에 강한 자외선이 작용하여 오존과 PAN(피옥시아닐아이트라 이드)등의 산화물이 생성한다는 것이다. 이과정에서 발생하는 NOx를 제외한 산화
물질의 총성을 "강화학 산화성 물질"이라고 부르고 있다.

우선 대기중의 대표적인 활성물질인 OH 라디칼(이것은 후에 재생된다)과 VOC가 반응한다.

\[\text{OH} + \text{RH} \rightarrow \text{H}_2\text{O} + \text{R} \]

\[\text{R} + \text{O}_2 \rightarrow \text{RO}_2 \text{ (알킬퍼옥사이드)} \]

이 생성한 RO2는 NOx의 존재하에 NO와 반응하고 HO기를 재생하여 연쇄반응을 완성한다.

\[\text{RO}_2 + \text{NO} \rightarrow \text{RO} + \text{NO}_2 \]

\[\text{RCH}_2\text{O} + \text{OH} \rightarrow \text{RCHO} + \text{HO}_2 \text{ (하이드로 퍼옥시라디칼)} \]

\[\text{HO}_2 + \text{NO} \rightarrow \text{HO} + \text{NO}_2 \text{ (하이드록시 라디칼의 재생성)} \]

\[\text{NO}_2 \rightarrow \cdot \text{NO} + (\cdot \text{O}) \text{ (NO의 생성)} \]

\[(\cdot \text{O}) + \text{O}_2 \rightarrow \text{O}_3 \text{ (오존의 생성)} \]

여기서

\[\text{RO} : \text{카보닐기} \]

\[\text{RCHO (R' (\cdot \text{O})R^-)} : \text{VOC에서 유도되는 케톤 및 알데히드와 같은 카보닐기 화합물} \]

이상을 정리하면

\[\text{VOC} + \text{NO} + \text{O}_2 \rightarrow \text{R' /C(O) R^-} + \text{NO}_2 \]

\[\text{NO}_2 + \text{O}_2 + \text{자외선} \rightarrow \text{NO} + \text{O}_3 \]

NO는 HNO2, RO 라디칼이 없을때(즉 VOC가 없을때)에는 오존과 반응하여 NO2가 되며 반대로 VOC에서 발생하는 이들 라디칼이 있으면 오존의 분해는 억제되고, NO2의 자외선에 의한 분해에 의하여 생성하는 발생기산소(0)는 O3가 되어 오존 농도가 상승
하게 되는 원리이다.
알킬퍼옥사이드는 반응이 진행되면 알데히드, PAN(퍼옥시 아실 나이트라이드), (CH₃ COO₂NO₂) 등의 산화성 물질을 생성한다. 따라서 VOC, 질소화합물, 황산화물 등의 공존하에서 자외선 광선에 의해 부유분진, 산화성물질, 초산염 등을 생성하고 건식강화물에서는 찾하우스모그가 되고, 습식 강하물에서는 산성비가 된다고 생각된다.
완전 VOC의 산화성물질 생성능력은 각각 다르므로 유기용제 사용시 산화성 물질의 생성능력이 낮은 것을 사용해야 하나, 최근 VOC 의정서에 의해 이 평가법의 국제적 확립이 추진되고 있는 중이다.

4.3 대기중의 VOC 기동(12)
대기중에 존재하는 VOC의 각각의 양은 미량이지만 그 종류는 방대한 수이며 농도는 화합물이 배출되는 속도와 소멸 속도와의 물질수지에 의하여 결정된다. VOC는 대기중에서 소멸반응 과정에서 다양한 물질로 변화되며 최종적으로는 탄산가스가 되고, 이 모든 과정에서의 생성물은 지구온난화에 기여한다.
할로겐화탄화수소는 반응성이 적기 때문에 제류기간이 길어 결과적으로는 성층권에 이르러 축적되는 것도 있으며, 분해되는 것도 있다. 한편 자연계 식물에서 발산하는 탄화수소, 테르펜류의 양은 많으나 제류기간이 짧아 큰 문제가 되지 않으며, 인위적으로 배출되는 VOC도 프론트류를 제외하고는 같은 성질을 갖는다. 표 2에 대류권 하층의 VOC 관련물질에 관한 평균제류시간과 반응과정을 나타냈다.

4.4 성층권의 오존층 파괴
자연계에서는 없는 오로지 인위적인 배출에 의한 Halogen화 탄화수소 제류기간이 길고, 대류권을 상승하는 도중에 분해되는 양도 적으며, 성층권에 도달후 강한 자외
표 2. 대류권 하층의 VOC 관련 물질의 평균농도와 체류시간

<table>
<thead>
<tr>
<th>기체분석 / 화학적</th>
<th>평균농도</th>
<th>체류시간(년)</th>
<th>대기권주요소별과정</th>
</tr>
</thead>
</table>
| 일산화탄소, CO | 150 ppb | 0.3 | 대류권 영향
| * 탄화수소 | | | |
| CH₄ | 1720 ppb | 10 | 대류권 영향
| C₂H₆ | 0.8 ppb | 0.3 | 대류권 영향
| C₃H₈ | 0.05 ppb | 0.03 | 대류권 영향
| C₂H₂ | 0.1 ppb | 0.3 | 대류권 영향
| C₂H₄ | 0.1 ppb | 10⁻³ | 대류권 영향
| * 알데히드 | | | |
| H₂CO | 0.2 ppb | 10⁻³ | 대류권 영향
| CH₃CHO | 0.002 ppb| 10⁻³ | 대류권 영향
| CH₂COCH₃ | 1 ppb | 0.3 | 대류권 영향
| * 플루오르화합물 | | | |
| CF₄ | 100 ppt | > 500 | 중간기량분해
| C₂F₆ | 5 ppt | > 500 | 중간기량분해
| * 클로로카본 | | | |
| CH₃Cl | 600 ppt | 1.5 | 대류권 영향
| CH₂Cl₂ | 30 ppt | 0.6 | 대류권 영향
| CHCl₃ | 10 Ppt | 0.7 | 대류권 영향
| CCl₄ | 110 ppt | 50 | 대류권 영향
| CH₂Cl₂CH₂Cl₂ | 30 ppt | 0.4 | 대류권 영향
| CH₃CCl₃ | 130 ppt | 7 | 대류권 영향
| C₂HCl₂ | 10 ppt | 0.02 | 대류권 영향
| C₂Cl₄ | 20 ppt | 0.5 | 대류권 영향
| * 브로모카본 | | | |
| CH₃Br | 10~15 ppt| 1.7 | 대류권 영향
| CH₂Br₂ | 5 ppt | ~0.1 | 대류권 영향
| CHBr₃ | 5 ppt | 10~2 | 대류권 영향
| CH₂BrCH₂Br | 2 ppt | 0.4 | 대류권 영향
| * 요오드카본 | | | |
| CH₃I | 2 ppt | 0.02 | 대류권 영향
| * 클로로플루오르카본 | | | |
| CF-13/CCl₁₂F₂ | 5 ppt | 400 | 중간기량분해
| CF-12/CCl₁₂F₂ | 484 ppt | 130 | 중간기량분해
| CF-11/CCl₁₃F | 280 ppt | 65 | 중간기량분해
| CF-15/CF₃CCF₃Cl| 5 ppt | 400 | 중간기량분해
| CF-114/CC₁₁F₂CFCl₂| 60 ppt | 200 | 중간기량분해
| CF-113/CC₁₁F₂CFCl₂| 120 Ppt| 90 | 중간기량분해
| CF-22/CH₂F₂ | 120 ppt | 15 | 대류권 영향
| *브로모클로로플루오르카본 | | | |
| 하루 전 1301/BrF₂ | 2.0 ppt | 100 | 중간기량분해
| 하루 전 1211/CBrCl₁₂F₂| 1.7 ppt| 25 | 중간기량분해

주) 이산화탄소의 평균수명 2년은 해양, 육상생태계의 교환수명, 50~200년은 심층해양에 대한 제거수명이다. 또한 분해속도가 따른 유기용체, 식물에서 발산하는 탄화수소는 포함되지 않는다.
선에 의하여 분해되며, 발생되는 염수에 의하여 연쇄적으로 성층권에 축적 오존층
을 파괴한다.

4.5 지구환경의 산성화

대기의 산성화에 의하여 초래되는 산성비, 산성강하물질 등에 의한 토양, 호수
및 농 뿐의 산성화에 따른 생태계의 장해나 기물손상등이 지구 전체에서 발생하고
있다. 대기의 산성화는 앞에서 열거한 OH 라디칼과 NO₂, SO₂ 와의 반응에 의하여
질산이나 황산이 생성한다.

\[
\begin{align*}
\text{OH} + \text{NO}_2 & \rightarrow \text{HNO}_3 \\
\text{OH} + \text{SO}_2 & \rightarrow \text{H}_2\text{SO}_3 \quad \rightarrow \text{H}_2\text{SO}_4
\end{align*}
\]

이들 발생한 산은 기체상태 그대로 존재하며, 이들에 의해 중화된 염은 에어로졸(
먼지질)로서 대기중에 부유하고 있다.

4.6 지구 온난화(13)

(1) 온실효과 가스

태양에서 내리 비치는 적외선은 대기중을 통과해 지구 표면에 도달하여 지구 표
면을 따뜻하게 한다. 그러나 지구에서 방사되는 긴 파장의 적외선은 대기중의
탄산가스 등의 기체로 존재하는 대기에 흡수되어 열방산이 어렵게 되기 때문에 온
도가 높게되는 현상을 온실효과라 하고 한다. 탄산가스 배출량의 증가는 이대로
진행한다면 기온의 상승에 의해 인류 존재 여부와 관련될 만큼 심각한 문제가 직
면하게 될 것이다. 지구 온난화의 진행에 의해 발생되는 문제로는

① 해면의 상승에 의한 피해
② 중위도 지역에서의 삼림 재생능력 감퇴

③ 반경초 열대 지역의 가뭄 (사막화)

이 온실효과에 영향을 미치는 기체에 대한 기여도를 평가하는 값으로 최근에는 GWP(지구온난화 잠재성)치가 이용되고 있다. 이 수치는 이산화탄수를 기준으로 20, 50, 100년간의 적외선 방사의 적분치이므로 체류시간이 짧은것은 값이 작아진다. Halogen화 탄화수소류 등은 GWP 치가 탄산가스의 수천배에 달하는 것도 있다. 표 3에 미량성분의 기체를 일정량 방출했을때의 상대지구온난화 잠재성(GWP)를 나타냈다.

표 3. 미량성분의 기체를 일정량 방출했을때의 상대지구온난화 잠재성(GWP)

<table>
<thead>
<tr>
<th>미량 성분</th>
<th>GWP 치</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>평균수명</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>이산화탄소</td>
<td>1</td>
</tr>
<tr>
<td>메탄</td>
<td>10</td>
</tr>
<tr>
<td>아조산질소</td>
<td>150</td>
</tr>
<tr>
<td>CFC-11</td>
<td>60</td>
</tr>
<tr>
<td>CFC-12</td>
<td>130</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>15</td>
</tr>
<tr>
<td>CFC-113</td>
<td>80</td>
</tr>
<tr>
<td>CFC-114</td>
<td>200</td>
</tr>
<tr>
<td>CFC-115</td>
<td>400</td>
</tr>
<tr>
<td>* CH₄ → 대류권 O₃</td>
<td>24</td>
</tr>
<tr>
<td>* CH₄ → CO₂</td>
<td>3</td>
</tr>
<tr>
<td>* CH₄ → 성층권 O₃</td>
<td>104</td>
</tr>
<tr>
<td>* CO → 대류권 O₃</td>
<td>5</td>
</tr>
<tr>
<td>* CO → CO₂</td>
<td>2</td>
</tr>
<tr>
<td>* NOₓ → 대류권 O₃</td>
<td>150</td>
</tr>
<tr>
<td>* NMHC → 대류권 O₃</td>
<td>28</td>
</tr>
<tr>
<td>* NMHC → CO₂</td>
<td>3</td>
</tr>
</tbody>
</table>
(2) 은난화에 대한 당면죄제

앞에서 열거한 세계 각 나라들의 환경관련 회의 및 의정서 등에서 “자주적인
삭감대책 실시의 추진”과 “90년대말에 그 이전수준으로 되돌리자”라는 목표
주장을 대해서 선진국들은 2000년까지 1990년 수준으로 CO\textsubscript{2} 배출을 안정화 해야한
d는 성명을 발표했다. 산업계가 취하여야 할 대응책은

* 성에너지
* VOC 섭감
* 소비패턴의 개혁과 추구 등이 열거될 수 있다.

특히 성충권의 오존층 파괴를 초래하는 프론, 하온류는 적극적으로 사용폐지 되어야
야 하며, 합성수지 재료중 소각처리 오존효과 가스발생 가능성이 있는것에 대한
사용상의 주의가 요망된다.

5. 도료. 도장 부분의 과제

5.1 특정 할로겐 화합물에 의한 오존층의 파괴

오존층의 파괴에는 특정 할로겐 화합물이 원인 물질로 되어 있다. 도장공정중
전처리 공정에서 세척용제로 잘 사용되고 있는 불소가 용제나, 1,1,1-Trichloroet
hane 및 1,1,1-Trichloroethylene 등이 규제의 대상이 되며, 각종 에어로졸 도료제
품의 압축 가스로서 사용되거나 발포조제로 사용되는 후레온 가스로 규제의 대상이
된다. 이들 화합물은 1992년 몬트리올의정서 협약국 회의에서 특정 할로겐 및 트
리클로로에탄의 생산 및 소비량을 1994년에 89년 대비 50% 삭감하는 것으로 합의하
였으며, 1995년 말에는 전폐의 방향으로 진행되었다. 특히 트리클로로에탄에 대
해서는 당초 2004년 말에 전폐의 계획이었으나 급히 규제가 강화된 배경에는 오존
농도 감소를 막기 위하여 대기중의 업소 농도를 시급히 낮출 필요가 있다고 판단되었기 때문이다. 현재 세계에서 연간 약 60만톤 정도의 트리클로로에탄이 소비되고 있으며 이것을 대신할 수 있는 세척 방법의 조속한 검토가 필요한 실정이다.

5.2 CO2 기소에 의한 온난화

도로중의 유기유체가 대기중에 방출되면 온난화나 광화학 SMOG의 원인물질이 되며 이미 각국에서도 도로중의 탄화수소류의 규제를 시작하고 있다.

특히 미국의 VOC(유기용기화합물)규제는 EPA(미국환경보호청)가 도장공장 등의 고정 발생원을 대상으로 배출기준을 설계하여 이것을 기준으로서 각주가 독자적으로 규제를 하고 있다. 또 독일, 덴마크, 네덜란드, 이탈리아, 프랑스등에 있어서도 도장이나 건조공정에 따른 용제류의 염한 배출기준이 설명되고 있다. 일본의 경우는 이동발생원의 규제가 선행되어 고정발생원의 규제는 아직 행해지고 있지 않으나 환경성 또는 각 자치단체의 요청이 나오고 있다. 이들은 VOC의 배출을 감감하는 것은 도로 및 도장관련의 기업에서는 급한 일이며, 보다 고형분 농도가 높은 도로나 수계도로, 분체도로의 전환, 도착효율 향상을 위한 도장기기나 도장방법의 개량, 더욱이 도장 BOOTH나 소부건조로부터 배출되는 배기가스의 처리가 필요하게 된다.

5.3 산성비

산림의 고사나 물고기가 살 수 없는 호수 등, 산성비에 의한 피해가 확래되고 있다. 도장물에서는 하역된 자동차의 도막에서 얼룩상의 변연이 남기고 하여 피해가 생기고 있다. 이들 산성비는 pH가 5.0이하의 비를 정의하고 있으나 산성비의 피해를 생각하는 경우 비에 포함되는 이온의 종류와 농도가 중요하다. 비해 포함되
는 육안으로 해양입자로 부터 가인하는 염화물이온, 자동차나 공장에서 배출되는 대량의 질소산화물에 의한 질산이온, 화산재 등 자연현상이나 보일러 등에서 배출되는 황산이온이 주체이다. 최근의 자동차 도막의 산성비에 의한 비염류 문제가 CLOSE UP 되고 있는 배경에는 자동차 도료가 High Solid화 하고 있는 것과 상대적으로 농축화가 증가해서 차체의 표면온도가 높아지고 있는 것동으로 생각된다. 도막의 염류는 비속의 염산에서는 발생하지 않고 질산이나 황산으로 침식된 상태의 염류이 발생한다. 또 그 Mechanism은 능축된 황산에 의해 메라민 수지의 Triazine 환이 가수분해를 받아 최종적으로 시아놀산이 되어 수용화 한다고 보고되고 있다. 또 산성비도 원인의 하나라고 생각되나 철근부식에 의한 콘크리트 구조물의 열화가 큰 문제가 되고 있다. 더욱이 이산화탄소 Gas의 흡수에 의한 콘크리트의 증성화나 염화물이온의 혼입에 의해 국부적인 철근의 부식이 고양이나 도료의 수명을 짧게 하고 있다. 철근방식제의 개발이나 기 설치된 구조물에 대한 방어대책이 필요하다.

5.4 해양오염

선저나 여량등에 해양생물의 부착을 방지하기 위해 유기주석 화합물을 포함하는 도료나 처리재가 이용되고 있었으나 암석방어로 부터 주석화합물이 검출되어 인체에 영향을 주는 문제가 되어 그 사용이 규제되고 있다. 유기주석화합물은 체내에 축적되어 그 대표적인 화합물인 TBTO(Tributyl Tinoxide)는 신경계를 마비시키는 독성이 있어 1990년에 그 사용이 금지되었다. 현재 선저 도료에는 비교적 유해성이 낮다고 보여지는 아산화등계로 변하고 있으나 유기주석 외의 납안토나 크롬화합물 등의 중금속화합물에 대해서도 규제하려는 방향으로 이들을 대신하는 새로운 무

- 38 -
공해 방정체가 요구되고 있다.

5.5 산업폐기물

5.6 공정의 합리화

3D 직장으로서 특히 젊은 근로자들로 부터 기피된 도장작업 현장은 반성적인 노동력 부족이 되고 있어 도장 Cost의 증가를 초래하고 있다. 도장 로보트의 도입이나 PAST-COAT로 부터 Pre-Coat Metal로의 전환등, 대폭적인 공정의 합리화가 진행되고 있다. 또 재도장을 요하는 기간이 길 초중방식 도료나 고내후성 도료로의
대체도 진행되고 있다. 더욱이 처리공정이나 도장공정을 단축, 또는 삭제하는 요
구도 높이고 있다. 어問い合わせ를 금후 속연도장공에 의지할 수 밖에 없는 작
없을 계속하는 것이 극히 어렵게 되는 것은 명백하므로 지금의 시점에서 그것을 대
신하는 방법을 모색할 필요가 있다.

5.7 도장품질등성능의 형성

기능, 디자인성을 중시한 경쟁력 있는 제품개발이 행해지고 있는 가운데 도료에
대해서도 User 측으로부터 엄격히 요구되고 있다. 최근의 공업제품의 성능 Level
은 대부분의 각각이 평준화되고 있어 상품이 갖고 있는 디자인이나 외관성이 구매
의 동기가 되고 있어 도료의 Color Design에 대한 Weight가 높아지고 있다. 또 차
의 소비자는 황스킬을 하지 않아도 언제까지도 흠이 없는 신차와 같은 정도의 광택
을 요구하고 있다. 차체의 방청에 대해서 미국에서는 소비자를 보호하는 입장에
서 녹슬어 구멍이 생기기까지 10년, 외관상 녹발생 5년, 엔진 Room내의 녹발생 2년
Under Body 녹발생 1년의 방청보증을 목표로 생각하고 그 목표달성을 위한 대책이
추구되고 있다. 이와 같이 도료에 대해서 성능이나 기능성의 개량요구가 강해지
고 있다.

5.8 규격화

ISO(International Organization for Standardization)는 물품이나 Service의 국
제교역 및 협력이 용이하게 가능하도록 세계적인 규격의 심의, 제정을 추진하는 것
을 목적으로 하고 있다. 1947년 발족이래 현재 참가국은 89개국에 달하고 있다.
ISO의 도료관계 규격은 TC 35(Paint 및 Varnish)이고 도료원료의 시험규격으로 시
작하여 도료시험 방법의 제정, 더욱이 현재는 도장건 표면처리의 표준화나 철구조
물의 방식도장 사양의 표준화가 행해지고 있다. 이들은 다국간에 걸친 국제협약 등에 있어서의 도장서양을 통일하는 의도가 있다.

5.9 주요 도료분야별 대응

(1) 중방식 도료

중방식 도료의 과제에 대해서 그림-2에 나타났다. 중방식 도료의 분야는 종래의 철골등과 더불어 최근에는 석유가 비축 Tank, 대교대 부식환경이 가혹한 용도가 증가하고 있다. 또 용이하게 제도장을 할 수 없으므로 보수, 또는 제도장기간이 긴 도료가 필요하게 된다. 이 때문에 하도도료로서 무기 Zinc Rich, 중도에 액체수지도료의 종래의 도장재에 상도도료로서 불소수지 도료나 아크릴실리콘 도료가 채용되고 더욱이 합Glass Flake 도료나 초추락에목시 도료등이 목격에 따라서 사용되고 있다. 도장의 전처리 작업으로서 많은 공수를 필요로 하는 녹제거 작업을 경감시키기 위해서 소지조정이 불충분한 도록면에 침투하여 녹을 고정화, 외부 부식인자로부터 차단하는 Kethimine Type의 경화제를 사용한 녹면 침투형 액체수지도료가 개발되고 있다.

콘크리트 구조물중의 철근부식을 방지하기 위해서 콘크리트 혼련시에 아질산염이나 크롬산업등의 Inhibitor가 사용되고 있으나 그 역제효과는 비교적 낮고 최근에는 용용아연도금 철근의 사용이 확대하고 있다. 또 기설치된 구조물중의 철근부식의 진단도 교류 Impedance법 등의 기술진보로 있어 콘크리트 표면의 보수도장등조기의 대책이 가능하게 되고 있다. 선조도료의 방모제로서 유기주석 화합물에 대신할 수 있는 새로운 방법이 시도되고 있다. 예를들면 섬씨의판의 접수면에 도전성 도막을 피복하여 미소전류를 통합으로서 국표층에서 전기분해가 일어나 차
아름소장 이온이 발생해서 해양생물의 부착을 방지하는 방법, PVA(Polyvinylalcohol) 등의 Gel 상 물질의 표면특성(탄성, 친수성, 용해성, 보수성)에 의한 부착의 방지, 더욱이 해양생물의 기피작용에 착안한 연구가 진행되고 있어 어패류 등의 영향이 없는 천연으로부터 얻어지는 화합물을 이용한 새로운 선제도료의 탐색이 시도되고 있다.

![Diagram](image)

그림-2. 중방식 도료의 과제

(2) 자동차 도료(17)(18)(19)

자동차 도료의 과제에 대해서 그림-3에 나타났다. 자동차 도료의 경우 특히 외관품질이 중시되므로 이 분야에서 검토가 진행되고 있다. 도막의 굴절을 조정
이나 경화시의 수축율을 낮추는 등의 방법에 더불어 Micropel을 도료증에 병용함으로써 도장시의 점도제어가 가능하게 되어 보다 고교형분으로 평활성이 우수한 도료의 개발이 가능하게 되었다. 산성비에 의한 도막의 얼룩을 방지하기 위해서 메라민 이외의 새로운 가교반응제에 대한 연구가 활발히 진행되고 있다. 현재 Expoy기, Carboxyl기, Alkoxyssilane의 자기가교, 산무수기 / 수산기, 불포화기 / Polykethylmine(Michael반응), 저온히트립 Blocked Isocyanate등을 반응계로 하는 검토가 주제이다.

그림-3. 자동차용 도료의 과제
신차의 운송중이나 Stock 시의 산성비나 충돌등에 의한 도막의 오염, Scratch로 부터 보호하기 위해서 현재 파라핀왁스 등의 도막보호제가 도포되고 있으나 일시보호 Film이 개발되고 있다. 또한 수계도료의 Over Spray Mist를 회수하여 재이용 가능한 Rechicle 도장 System의 개발이 행해지고 일부 도장 Line에서 채용되고 있는 실정이다.

(3) PLASTIC 용 도료

그림-4. PLASTIC용 도료의 과제

- 고광택, 고회장성
- 내후성, 내구성
- 기능성
- 의장성

도장품질

- 도장 Cost 절감
- 공정단축
 - 저온화
 - VOC 삭감
 - 탈 TCE
 - Recycle 성
 - Polymer-Alloy
 - Engineering Plastics
 - 복합 Plastic

- 환경대책

신소재대응
Plastic의 도장에 있어서도 커다란 과제는 환경문제이다. Trichloroethane의 전면급지에 수반하는 전처리의 대체방법 검토가 행해지고 있다. 초진동 탈지장치는 수개의 알카리성 또는 중성세제를 사용해도 종래의 Toe를 상회하는 세척력이 있다. 도료의 수계화 검토도 행해지고 있고 Polypropylene용 Primer의 수계화에서는 염소화 PP나 마레안산변성의 염소화 PP를 계면활성제를 병용해서 유화한 것을 우려한다. 또는 아크릴계 에틸렌과 혼합해서 사용하고 있다. Plastic에의 도착효율을 높히기 위한 검토도 행해지고 있다. 표면저항치가 높고 안전성에 문제가 있는 PP Bumper의 정전도장화에 대비해서 열경화 Type 도전 Primer의 개발로 VOC를 약 50% 정도를 참감하고 있다고 한다.

PP Bumper를 회수 재이용하는 경우 우려한다. 도막이 혼합되면 재생품의 내충격성 물성은 염화한다. 이 때문에 회수 Bumper에서 효율성도 도막을 박리시키는 기술로서 전통압착법이 개발되어 있다. 이 방법은 종래부터 시도하고 있는 용제법이나 용융법의 Cost, 실용성의 결점을 개선하고 있다.

6. 주목되는 새로운 기술

도료를 사용하는 과제와 그들을 해결하기 위한 수단이 될 수 있는 Key Technology에 대해서 표-4에 정리했다. 이들 기술에 대해서는 반드시 환성되어 실용화된 것은 아니나 도료나 도장의 여러과제 해결에 일조가 될 수 있다고 생각한다.

6.1 저온해리형 BLOCKED ISOCYANATE

저온해리형 Blocked Isocyanate는 저장시의 안정성이나 Block제에 의한 변색, 오염등의 문제가 해결되며 용도는 상당히 확대될 것으로 생각된다. 2액형 우레탄의
혼합작업의 번거로움을 해소하는 Merit는 크다. 반응성 Block제의 채용이나 해리
축개의 선택등에 의해 이들의 문제는 해결될 지도 모른다. 또 VOC 대책으로서 수
용성 Blocked Isocyanate나 무용제 Blocked Isocyanate의 개발도 필요하다. (20)

6.2 MICROGEL

이미 앞에서도 취급한 바와 같이 Microgel은 접성을 부여하는 우수한 개질제이다.
입자/매체간의 친화성이나 입자의 내부가교도를 조정함으로써 그 접성을기능을 제
어할 수 있다. Microgel은 이것 이외에도 Polymer나 가교재와의 상호작용에 의한
도막물성의 개량, 마모저항의 향상, 더욱이 물이나 탄산가스의 침입을 방지하여 도
막중의 과잉수분의 방출기능(투수성), 입자의 중중 Morphology 입자의 합성이 가능
해서 도막의 은폐 또는 무기안료에 Microgel을 흡착시킴으로써 수계도료중에서의
안료의 분산성의 향상(Hetero 응집), 분체도료 입자표면에 Microgel을 흡착시킴으로
써 Flow성과 대 Blocking성이 다른 성질의 것을 안정하게 혼재시키는(복합화기술)
등의 우수한 기능이 있고 더욱이 그 용도는 확산될 것으로 생각한다.

6.3 복합성형기술

Pre-Mold Coating, In-Mold Coating등과 같이 성형과 도장을 복합시킨 성형기술
은 다른 2가지 공정을 동시에 달성하는 새로운 시도이고 환경문제가 공정의 합리화
에도 결맞는 새로운 분야를 형성할 수 있을 지도 모른다. 다만 압축성형, 사출성
형, 압출성형과 도장의 복합화에는 복잡한 성형기술의 제어가 필요하거나 Computer
제어기기의 발달에 의해 실용화될 것이다. (21)

6.4 저온경화형 수용성도료
<table>
<thead>
<tr>
<th>과 제</th>
<th>KEY TECHNOLOGY</th>
<th>대응도로 기술</th>
</tr>
</thead>
<tbody>
<tr>
<td>환경문제</td>
<td>오존층 파괴</td>
<td>* 무색적 프라이머</td>
</tr>
<tr>
<td></td>
<td>지구온난화</td>
<td>* 탈 PVC, 염화고무도료</td>
</tr>
<tr>
<td></td>
<td>강화소스모그</td>
<td>* 저용량도료</td>
</tr>
<tr>
<td></td>
<td>산성비</td>
<td>하이솔리드 도료</td>
</tr>
<tr>
<td></td>
<td>증기오염</td>
<td>약용제형도료</td>
</tr>
<tr>
<td></td>
<td>취기</td>
<td>* 수재도료</td>
</tr>
<tr>
<td></td>
<td>Recycle</td>
<td>* 분체도료 PCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 수재도료</td>
</tr>
<tr>
<td>공정의 합리화</td>
<td>* 무용제형도료</td>
<td></td>
</tr>
<tr>
<td></td>
<td>압축성화형도료</td>
<td>* 저온성화형도료</td>
</tr>
<tr>
<td></td>
<td>신기교계도료</td>
<td>신기교계도료</td>
</tr>
<tr>
<td></td>
<td>방사선 경화</td>
<td>UV 경화</td>
</tr>
<tr>
<td></td>
<td></td>
<td>방사선 경화</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* 도착효율</td>
</tr>
<tr>
<td></td>
<td></td>
<td>전도성도료</td>
</tr>
<tr>
<td>도막품질</td>
<td>고급화</td>
<td>* 주석, 납, Cr Free도료</td>
</tr>
<tr>
<td></td>
<td>고성능화</td>
<td>* 무연마형도료</td>
</tr>
<tr>
<td></td>
<td>고부가가치</td>
<td>녹면침투형도료</td>
</tr>
<tr>
<td>규격화</td>
<td>ISO</td>
<td>* Primerless</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Universal Primer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* IN-Mold coat</td>
</tr>
<tr>
<td>신소재대응</td>
<td>복합강판</td>
<td>* 아크릴 실리콘도료</td>
</tr>
<tr>
<td></td>
<td>방청강판</td>
<td>* 불소도료</td>
</tr>
<tr>
<td></td>
<td>ENPLA</td>
<td>* 네 Scratch 도료</td>
</tr>
<tr>
<td></td>
<td>POLYMER ALLOY</td>
<td>* Color coordinate</td>
</tr>
<tr>
<td></td>
<td>GRC</td>
<td></td>
</tr>
</tbody>
</table>
이미 수용성 도료가 채택되어 사용되어지는 부분으로서 대표적인 것이 전작도료 분야이다. 수용성 합성수지의 합성은 양이온형과 음이온형 및 양성이온형이 가능
하나 방청성능면에서 양이온형이 유리하지만 가장 용이하고 간편 방법은 음이온형
이며, 양성이온에 의한 것은 수가용 능력에 문제가 있다.
전작도료 이외에 방청프라이머 부분에 많이 채택되어 있으나, 환경보호 측면에서
자동차용 Base Coat의 수용화가 주목된다. 이는 가장 VOC를 많이 함유한 도료이
기 때문이다. 또한 이들 도료의 정화온도를 낮추려는 연구도 활발히 진행되고 있
는데 저온해리형 Blocked Isocyanate의 개발이나 저온반응형 Melamin 수지의 개발
및 타수지와 그라프트융합에 의해 가교밀도를 높이는 방법에 의해 저온정화가 가능
하도록 하는 연구는 유정도료계와 같이 활발히 진행되고 있다.

7. 결론
지금부터 다양화하는 요구에 대응하기 위해서는 여러가지 기술의 복합화가 필요하다
고 생각한다. 여러가지 기능을 갖는 도료가 개발되어 새로운 응용범위를 넓혀 자연
과 조화하여 인간의 삶을 풍요롭게 할 수 있기를 고대한다. 근후 도료공업은 환경을
축으로 해서 크게 전개되고 국제적인 제휴나 제편이 예상되나 새로운 기술의 개발이
그 행방의 열쇠를 잡고 있을 것으로 생각된다.
참 고 문헌

(1) 土居正産, 保科和宏, 塗裝工學, 26(2), 84(1991)
(2) 이치규, 제 1회 도로.도장 기술심포지움, 한국공업화학회, P1(1992)
(3) 塗料と塗装 5, 41(1993)
(4) 秋元肇, 塗裝工學, 27(8), 330(1992)
(5) 田邊幸男, 塗裝技術, 1, 80(1993)
(6) 藤井聰, 塗装技術, 1, 96(1993)
(7) 日本環境聴, 28(9), 782(1992)
(8) 日本資源環境対策, 28(9), 783(1992)
(9) 阿北留雄, 地球環境問題協議会議報, 9, 10(1992)
(11) 秋元肇, 汚染物質の反応と地球規模の大気汚染, MOL, 10月別冊(1989)
(12) 田邊幸男, 塗装工學, 27(8), 374(1992)
(13) 田邊幸男, 塗装技術, 31(11), 998(1992)
(14) 平倉宗勝, 塗装技術, 29(3), 102(1990)
(15) 柳邊忠郎, 塗装技術, 31(9,10), 96(1992)
(16) 前田, 竹中, 材料と環境, 40, 619(1992)
(17) 化學工業月報, 192, 9, 18
(18) 田邊幸男, 表面技術, 43(4), 292(1992)
(19) 松井駒治, 塗装技術, 23(11), 85(1984)
(20) 足立正人, 工業塗装, 33, 13(1978)
(21) 藤井, 塗装技術, 1992年 10月 離時増刊號

-50-