SYNTHESIS OF EMULSION POLYMER AND QUALITY CONTROLS
예 밀 준 수 지의 합성 과 폐질 관 리

SYNTHESIS OF EMULSION POLYMER AND QUALITY CONTROLS

재미교 소 POLYMER 과학자
POLYMER SCIENCE CONSULTANT
김 동 영

1. 서론

유화중합(EMULSION POLYMERIZATION)이라는 것은 정화된 물을 기초로하여 이물질인 유화제(SURFACANTS)의 분산성(DISPERSION)의 힘을 이용하여 단량체(MONOMER) 균질으로하여 이것을 물리적인 방법으로 분산시켜 그 안에 종합물체를 주입하거나
화합제 및 반응합성체를 주입하여 적정선의 온도를 유지하여 MONOMER의 조합에
의한 종합체를 중합시키는 것을 말한다.

이 과정에서는 여러 가지 복잡한 형태로서 연속적인 매체에 의하여 상호 크기가
다른 또는 비슷한 물질이 들어있어 작은 입자로 되어 있을때 콜로이드 용액
(COLLOID SOLUTION) 또는 용(SOL)이라고 한다 위의 반응상의 연속적인 매체가
물(WATER)인 경우는 HYDROSOL이라고하며, 한편 연속적인 매체가 공기(AIR)일
경우는 AEROSOL이라고한다.

위의 상태의 분산된 입자가 용액상태의 액체이며 입자의 크기가 일반적으로 0.05μ
이상의 큰 상태를 EMULSION이라고하고 입자의 크기가 상당히 작은 상태(0.05μ으로)
로써 분포된 입자의 크기가 거의 동일하게 분포된 상태를 MICROEMULSION이라고
부르고 있다.
과거 1736년대 천연고무의 고체상태가 붓어 녹지 않은 유형의 분산상태로 또는 미립자 상태의 COLLOID상태를 LATEX라고 불리워 지고 있다. 그러나 요사이는 LATEX나 EMULSION의 용어를 거의 동일시된 관점에서 통용되어 사용하고 있다고 본다.

어릴존POLYMER의 제조 방법에는 대별하여 첫째로 몰리카 인 방법인 방법(또는 기계적인 방법)과 둘째로 화학적인 방법으로 분류할 수 있다.
첫째로 몰리카 인 방법인 EMULSION의 입자의 크기가 화학적 방법보다 LARGE PARTICLE을 형성하고 불균일하게 분포되어 있으며, 안정성이 떨어지며, 최소의 입자로 만드는데는 적한을 받게되며 도막의 표면이 거칠게 된다. 또한 사용목적의 물성은 만족하게 기대하기가 어렵다.
둘째로 화학적인 방법인 EMULSION POLYMER를 만들때는 입자의 크기를 자유롭게 조절할 수 있으며, 입자의 분포상태를 균일하게 또는 2종 3종 4종 또는 비구형, 이구형, 3구형 또는 EGNOL형, CORESHELL형, STARCH형 등으로 자유롭게 만들 수 있고, 안정성을 탁월하게 좋게 만들 수 있고 도막의 표면이 유리처럼 깨끗이 형성되고 접착력이 우수하며 사용목적에 따라 물성의 조절을 가능하게 할수있는 많은 유익한 점이 있다.

현대에는 와서는 특수한 분야를 제외하고는 거의 화학적인 방법에 의해서 제조하고 있다. 그리고 EMULSION POLYMERIZATION의 용용과 개발의 여지는 무궁한 발견을 하리다고 생각하오며 미래산업의 발전에 따라서 EMULSION POLYME의 공업도 계속적인 성장이 기대하는 바이다.

여기에는 주로 화학적인 방법에 의한 EMULSION POLYME의 저법 기법용용 및 품질 관리와 이야기 하겠다.
INTRODUCTION

1736 DE LA CONDAMINE
 RUBBER LATEX MILKY LIQUID

1838 HOHENSTEIN AND MARK
 POLYMERIZATION OF OLEFINS AND OLEFINS EMULSION

1861 THOMAS GRAHAM FOR COLLOIDS & CRYSTALLOIDS

1907 ROHM AND HAAS CO.
 BASE OF LEATHER TREATING POLYMER

1909 BAYER COMPANY IN GERMAN
 FARBENFABRIKEN BAYER: AQUEOUS EMULSION

1912 HOFMANN AND CO - WORKERS
 NATURAL RUBBER LATEX

1912 KONDAKOW
 MIXTURE OF TWO DIFFERENT MONOMERS
 (ESSENTIAL ELEMENTS OF EMULSION POLYMERIZATION)

1920 GERMANY, INDUSTRIAL DEVELOPMENT
 SYNTHETIC LATEX RUBBER

1925 ROHM AND HAAS CO.
 LEATHER COATING ACRYLIC LATEX POLYMER

1927 I. G. FARBEN COMPANY
 BUTADIENE SYNTHETIC LATEX (USED SOAP AS EMULSIFIERS)

1933 WHITBY AND KATZ
 VULCANIZED POLYMERS

1938 FIKENTSCHER
 EMULSION POLYMER SOLUBILIZED (MONOMER SOLUBILIZED)
3. 유화중합 이론

유화중합의 진행방법의 이론에는 여러가지 반응조건과 단량체의 구조 및 사용하는 특성 및 반응진행 방법에 따라서 다양하게 진행될 수 있다. 그러나 일반적으로 중합의 목적에 따라서 개시제의 사용하는 방법에 따라서 또는 반응온도에 따라서 첫째로 REDOX SYSTEM과 둘째로 GRADUAL REDOX SYSTEM 및 세째로 THERMAL SYSTEM 등으로 반응을 진행시킨다.

<table>
<thead>
<tr>
<th>REACTION TEMP</th>
<th>INITIATORS</th>
<th>REACTION TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REDOX SYSTEM (산화환원적축매중합)</td>
<td>개시제</td>
<td>50-60 °C</td>
</tr>
<tr>
<td></td>
<td>환원제</td>
<td></td>
</tr>
<tr>
<td></td>
<td>산화제</td>
<td></td>
</tr>
<tr>
<td>2. GRADUAL REDOX</td>
<td>개시제</td>
<td>65-75°C</td>
</tr>
<tr>
<td></td>
<td>산화제</td>
<td></td>
</tr>
<tr>
<td></td>
<td>환원제</td>
<td></td>
</tr>
<tr>
<td>3. THERMAL SYSTEM</td>
<td>개시제</td>
<td>80-90°C</td>
</tr>
</tbody>
</table>

위와같이 반응조건에 따라개시제 및 산화제 환원제 사용이 다르고 반응온도 역시 다르다.

4. 유화중합의 배경

위와같은 각 반응조건에 따라서 MONOMER조합으로부터 EMULSION POLYMER를 얻는 중합 방법은 상태에 따라서 균일염 (HOMOGENEOUS SYSTEM)와 비균일염 (HETERGENEOUS SYSTEM)로 나눌수 있다.

비균일염 중합방법은 자유함자와의 의한 중합이 대부분이지만 이외에도 이온중합, 축합중합, 간합중합 같은 방법도 이용될 수 있다. 그러나 자유함자와 반응이 지배적이어서 반응식의 유도나 반응기구의 설명을 자유함자와 반응으로 하고 있다.

FIG. 1은 메틸메타크릴레이트 (MMA)의본산 중합에서 관찰되는 반응속도를 나타내고 있다. 처음은 반응이 서서히 일어나고 약 20%의 전환이 이루어졌음에 근거하여 빠르게서 약 80%의 전환까지 계속된다.
Figure 1. Rate of dispersion polymerization of methyl methacrylate: (a) Rate of output of heat of polymerization against time; (b), Corresponding time/conversion curve obtained by integration of (a). Conditions: methyl methacrylate 50%, azodiisobutyronitrile 0.2%, graft dispersant 2.5% in n-dodecane at 80°C. Arrows mark establishment of reaction temperature and start of polymerization. (From Barrett and Thomas, J. Polym. Sci. A1, 7, 2626 (1969), with permission)

Figure 2. Comparison of rates of dispersion polymerization (A), precipitation polymerization (B) and solution polymerization (C) of methyl methacrylate at 80°C. (From Barrett and Thomas, J. Polym. Sci. A1, 7, 2627 (1969), with permission)
이후의 반응은 다시 느껴지고 있는데, 이와 같은 S 자형의 전환
(sigmoidal conversion) 이 비균일성 중합에서 동상 관찰되는 형태이다.

Fig. 2는 분산중합, 정전중합을 응연중합과 비교한 것인데, 두 비균일
중합방법의 응연 중합액 비에 반응속도가 매우 다르고 또 거의 100%의
전환을 얻을 수 있음을 보고 있다.

비균일성 중합방법중에서 유화중합의 성질과 특성은 이미 Table III
과 IV에서 살펴 보았으나, 유화중합의 장점과 단점을 요약하면 다음과
같다.

(1) 장점

- 높은 분자량과 좁은 분자량 분포 - 반응속도가 일관되게 비례하기
 때문에 반응속도와 분자량을 높일 수 있는 유일한 중합방법이다.
- 과상이나 응연중합의 경우 반응속도와 분자량은 서로 반비례한다.
- 또한 연속유화중합의 경우에서 이론적으로 유도된 분자량분포
 (MW/ūn)는 2.0과 4.84의 비교적 좁은 범위의 분포를 나타내고
 있다.
- 높은 전환율 - 대부분의 유화중합은 수시분해로 중합이 되고 전환율
 도 거의 100%에 가깝다. 타 중합방법은 100% 전환의 어려움
 때문에 반응속도를 높이지 않고 반응속도를 높이지 않고 단량체의
 처리가 문제되기도 하지만, 유화중합에서는 그러한 문제
 이 없이 가능하다.
- 좋은 혼합과 열전달 - 물을 연속적인 매체로 사용하기 때문에 반응
 물에 점도가 낮아 혼합이 쉽다. 좋은 혼합은 반응물을 고밀도
 분포시켜 일정한 반응이 완료되도록 해주고 또한 반응자의
 점도도 유리하게 한다. 따라서 제품의 질관은 기본적으로 양호하다.
- 귀장이나 응연 중합수록 균일성 중합방법은 전환율이 높아짐에
 따라 분자량이 증가하고 점도가 높아져서 고분자 밀도가 반응
 열의 제거가 어려다.
- 최급의융합액 - 물을 매체로 사용하고 미반응 단량체가 거의 없기
 때문이다. 정전성 응연에 대한 유아요소가 거의 없다. 제품의 대부분
 이 점도가 낮은 응연상태이어서 최급이 매우 가볍다.

이에선... 그량...사용할 수 없기 때문에 재분산이나 재유화

181---
시기는 궁정이 필요없다.

(b) 단점

1. 점가법에 의한 오염-중합에 사용되는 여러가지 점가법의 의한 오염이 비교적 심하다. 유화체(유한법), 계시제, 안충제, 환면제, 황성제등이 공정상 지장을 줄기 때문에 최종제품에 존재한다.
2. 오염제거를 위한 추가공정-만일 이등 점가법의 오염이 심각하여 물성에 큰 영향을 미치던 이등 점가법 제거적이 한다. 따라서 제거, 섬적, 건조등과 같은 추가공정이 필요할 경우도 있다.
3. 단량체의 유화공정-일반적인 유화중합법은 단량체를 미리 유화시킨 공정이 요구된다.

Table IV. Characteristics of Heterogeneous Systems

<table>
<thead>
<tr>
<th>Type</th>
<th>Continuous phase</th>
<th>Characteristics</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dispersion</td>
<td>Water</td>
<td>Low monomer solubility</td>
<td>Coarse(0.5-1.0 μ) but stable emulsion</td>
</tr>
<tr>
<td></td>
<td>Organic Liquids</td>
<td>Initiator soluble in continuous phase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polymeric surfactants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gel effect</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Water or Organic Liquids</td>
<td>Monomer and initiator soluble in continuous phase</td>
<td>Stable latex (0.1-0.5 μ) but up to 5 μ possible</td>
</tr>
<tr>
<td>Suspension</td>
<td>Water</td>
<td>Graft copolymer dispersant</td>
<td>Agglomerated Polymer or slurry</td>
</tr>
<tr>
<td>(pearl, bead)</td>
<td></td>
<td>Autoaccelerated Polymerization due to gel effect</td>
<td></td>
</tr>
<tr>
<td>Emulsion</td>
<td>Water</td>
<td>Low monomer solubility</td>
<td>Coarse(>5 μ) suspension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initiator soluble in monomer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low level of ionic surfactant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gel effect</td>
<td>Stable latex (0.1-0.3 μ)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low monomer solubility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initiator soluble in continuous phase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ionic/nonionic surfactant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High rate due to radical isolation</td>
<td></td>
</tr>
</tbody>
</table>
表I. Principal Application Classes of Emulsions

<table>
<thead>
<tr>
<th>Area</th>
<th>Specific Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Coatings</td>
<td>Gloss, Semi-gloss, Flat, Sheen, Exterior, Interior, Primer, Sealer, Fire retardant, Cement and mortar, Building boards, Multicolor, Insecticidal, Marine</td>
</tr>
<tr>
<td>Industrial Finishes</td>
<td>Automobiles, Appliances, Anti-corrosive, Metal, Can, Wire, Others</td>
</tr>
<tr>
<td>Paper</td>
<td>Saturation, Binder, Mineral coating, Size Press, Greaseproof, Packing, High gloss, Wall paper, Transfer, Release, Electroconductive, Others</td>
</tr>
<tr>
<td>Leather</td>
<td>Finishing, Dyeing, Impregnation, Shoe Finishes, Leatherboard, Synthetic leather</td>
</tr>
<tr>
<td>Polishes</td>
<td>Floors, Industrial cleaners, Strippers, Gloss, Sealers, Others</td>
</tr>
<tr>
<td>Building</td>
<td>Adhesive, Sealants, Plaster, Cement, Flooring, Decorative facings, Wall coatings, Others</td>
</tr>
<tr>
<td>Other Application</td>
<td>Binding of leather scrap, Coating for food packaging, Glass fiber treatment and binders, Vibration damping, Sound deadening, Photographic and copying, paper, Coatings for synthetic films and sheets, Fire-retardant coatings, Electrostatic screening, Dielectric sealing, Horticultural, Inks and writing, Foams, Medical, Cosmetic, Toilet</td>
</tr>
</tbody>
</table>
다음의 TABLE2는 중합방법에 의하여 공업적으로 사용되는 제품들의 보기를 열거했다.

Table II. Polymerization Methods and Typical Commercial Products.

<table>
<thead>
<tr>
<th>Method</th>
<th>Typical Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Homogeneous</td>
<td></td>
</tr>
<tr>
<td>. Mass(Bulk)</td>
<td>Polystyrene and copolymers, Low density polyethylene, Polymethylmethacrylate</td>
</tr>
<tr>
<td>. Solution</td>
<td>Polystyrene, Styrene-acrylonitrile, Polybutadiene, High density polyethylene,</td>
</tr>
<tr>
<td></td>
<td>Polymethylmethacrylate, Polyvinyl acetate and copolymers, Isoprene/isobutylene</td>
</tr>
<tr>
<td>* Heterogeneous</td>
<td></td>
</tr>
<tr>
<td>. Dispersion</td>
<td>High density polyethylene, Polypropylene</td>
</tr>
<tr>
<td>. Precipitation</td>
<td>Polyvinyl chloride, High impact polystyrene</td>
</tr>
<tr>
<td>. Suspension</td>
<td>Polyvinyl chloride, Styrene-acrylonitrile, High impact polystyrene,</td>
</tr>
<tr>
<td></td>
<td>Polymethylmethacrylate</td>
</tr>
<tr>
<td>. Emulsion</td>
<td>Polyvinyl chloride, Styrene-acrylonitrile, Polyvinyl acetate and copolymers,</td>
</tr>
<tr>
<td></td>
<td>Acrylonitrile-butadiene-styrene, Styrene-butadiene, Polyisoprene, Polychloroprene</td>
</tr>
</tbody>
</table>

한편 비균일계의 중합방법은 근본에서 비슷함성이 많으나 각각의 특성이 다르므로 다음 TABLE에 특성을 표시하였다.

Table III. Comparison of Heterogeneous Systems

<table>
<thead>
<tr>
<th>Property</th>
<th>Dispersion</th>
<th>Precipitation</th>
<th>Suspension</th>
<th>Emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>. Separate monomer phase</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>. Initiator dispersed in diluent</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>. Particles formed in diluent-phase</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>. Particles stabilized</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>. Particle number dependent on Stabilizer concentration</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>. Polymerization rate dependent on particle number</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: (+)yes, (-)no
6. 유화중합의 기본이론

(1) 기초이론

FUNDAMENTALS OF EMULSION POLYMERIZATION 학자들의 EMULSION은 첨가된
분산제와 일반적인 반응조건 아래에서 소량의 수용성 상태와 비수용성 상태의
2개의 용액상태에서 존재하고 있다.

또한 상태에서 O/W상태(OIL IN WATER)와 W/O상태등의 EMULSION 구조상태를
형성하고 있는데 이는 사용하는 분산제나 계면활성제로서,반응조건에 따라서
EMULSION의 형태를 변형 시킬 수 있다.

유화제 의해 생성된 미셀 (micelle), 단량체 및 성장하는 고분자를 포함
하고 있는 단량체로 쩐운은 입자 (monomer-swollen polymer particle),
그리고 단량체의 공급원인 단량체 액적 (monomer droplet) 이
물에 분산되어 있는 것으로 수용성 계시체에 의해 반응이 개시된다.
반응가속은 단량체의 용해도에 크게 의존하고 있는데, 반응가속이 가능한
생장소 (미셀, 유화체중, 수용액상, 단량체 액적)에 따른 이론의 모두
소개되어 있다.

Schematic Representation of an Emulsion Polymerization
단량체와 생성된 고분자 물질의 응해도에 따라 몇몇의 유형이 관찰된다.
- 단량체가 물에 잘 녹지 않는 것으로 (0.1% 이하)
 부타디엔, 스티렌, 비닐스테아레트동이 여기에 속한다.
- 단량체는 물에 약간 녹지만 고분자 물질은 녹지 않는 것으로 메틸
 메타 아크릴레이트와 아크릴로니트릴이 예이다.
- 단량체도 상당량 물에 녹고 고분자도 전수성을 갖고 있는 것으로
 초산비닐이 좋은 예이다.
- 단량체도 물에 잘 녹거나 섞이며 고분자도 완전수용성을 지나 수평
 운성인 것으로 아크릴산과 메타크릴산이 이에 속한다.

단량체 및 생성 고분자의 성질에 따라 지배되는 유화중합 구조도 달라
진다는. 대부분의 고분자는 그의 단량체에 잘 녹지안 방화비닐이나 아크
릴로니트릴 같이 녹지 않는 것도 있다. 또한 유화체나 다른 접합체의 영향
으로 단량체나 고분자의 응해도가 변하며, 많은 제품이 공중합체로 제조
되고 있어 반응기구는 매우 복잡하다.

자유티네일에 의한 반응은 격시 (initiation), 성장 (propagation),
정지 (termination) 반응으로 이어지고 Chain transfer 반응도 흔히
관찰되는 반응이다.

- 격시
 \[I \longrightarrow 2R^* \quad k_i \quad (1) \]
- 성장
 \[R^* + M \longrightarrow RM^* \quad k_p \quad (2) \]
 \[RM^* + M \longrightarrow RMM^* \quad k_p \quad (3) \]
. 정지
Combination
\[R(M)_{m}M^* + R(M)_{n}M^* \rightarrow R(M)_{m+n+2}R \quad k_t \] \quad (4)

Disproportionation
\[R(M)_{m}M^* + R(M)_{n}M^* \rightarrow R(M)_{m}M + R(M)_{n}M \quad k_t' \] \quad (4)

. Transfer
To modifier
\[R(M)_{n}M^* + RH \rightarrow R(M)_{n+1}H + R^* \] \quad (6)

To monomer
\[R(M)_{n}M^* + M \rightarrow R(M)_{n+1}H + M^* \] \quad (7)

To polymer
\[R(M)_{n}M^* + P \rightarrow R(M)_{n+1}H + P^* \] \quad (8)

To initiator
\[R(M)_{n}M^* + I \rightarrow R(M)_{n+1}H + I^* \] \quad (9)

공중합 반응은 두 개 이상의 탄당체가 반응에 참여하게 되어 더 복잡한
가이 된다. 두 개의 탄당체에 의한 공중합식을 간단히 기술하면 다음과
한다.

\[M_1^* + M_1 \rightarrow M_1^* \quad k_{11} \] \quad (10)

\[M_1^* + M_2 \rightarrow M_2^* \quad k_{12} \] \quad (11)

\[M_2^* + M_1 \rightarrow M_1^* \quad k_{21} \] \quad (12)

\[M_2^* + M_2 \rightarrow M_2^* \quad k_{22} \] \quad (13)
\[r_1 = \frac{k_{11}}{k_{12}} \quad r_2 = \frac{k_{22}}{k_{21}} \]

식(14)는 반응성비 (reactivity ratio) 로써 \(r_2 \)는 적고 \(r_1 \)이 크면 식(10)이 일어나기 심한 \(M_1 \)의 단독종합체가 더 잘 일어난다. 반대로 \(r_1 \)이 적고 \(r_2 \)가 크면 \(M_2 \)의 단독종합체가 생성되는 확률이 크다.

일반적으로 유황종합의 반응을 세구간으로 나누어 설명하고 있다. 이 구간의 분류는 보통 정성된 고분자 물질의 양으로 하는데 구간 I (interval I)은 입자형성 시기에 동상 1-5%의 전환까지를 말한다.

이 구간에서는 입자수와 반응속도가 증가한다. 구간 II (interval II)는 반응체 억제가 다투되는 순간까지로 입자수와 입자내의 반응체 농도가 데체로 일정하고 반응속도도 거의 일정하다. 입자의 전적증가는 전반적으로 비례한다. 구간 III(interval III)은 반응체 억제가 없어지는 순간으로 반응속도는 감소한다. 응력도가 낮은 반응체의 경우 수용액상의 반응체 농도를 무시할 수 있고 상대적으로 입자내의 반응체 농도가 높다. 입자내에서 반응이 진행되에 따라 입자의 크기는 약간 감소하고, 입자내의 점도가 상승하여 정지반응은 느리진다.

기타 다른 이론으로서는 (2) SMITH-EWART 이론, (3) MEDWEDEV 이론, (4) WILLIAM등의 공동연구가들에 의한 학설들이 알려져 있으나 충분한 설명을 하기에는 부족한 점들이 포함되어 서로의 이론의 논쟁이 계속되고 있다.
생성된 원자의 크기와 입자분포를 조절하기 위해 사용하는 방법이 "seed" 중합법이다. 이는 생성된 입자를 반응전에 두입하여 반응을 seed에서 일어나게 하는 방법으로 실험적으로도 많은 연구가 되었으며, 43 - 48 Seed의 입자크기는 대략 0.1시이하의 것을 사용하는 데, 두 다른 방법은 반응단위의 일부를 두입하여 먼저 seed를 만든후 반응을 진행시키는 중합법도 많이 이용되고 있다.

벤드 분자리스로 쓰이는 에멀젼의 중합은 하나의 반응기를 이용한 semi-batch식을 많이 사용하는데, 가끔 반응물 전부를 반응기에 넣고 한번에 반응시키는 batch식(one-charge method)이나 두번이상 분할해서 반응기에 주입시키는 방법 (two or multi-charge method)도 사용되고 있다. 또한 전 반응을 통해 단량체의 조성을 일정하게 할 수 있지만, 기능성 단량체의 요건을 높이기 위해 반응후기에 정가하여 입자포면의 조성을 변화시키기도 한다.

설명한 여러 가지 중합방법에 따른 실험은 Warson의 책 49에 많이 소개되어 있으므로 여기서는 생략한다.

4. 유화중합의 구성분

Table VI. Typical Ingredients of Emulsion Polymerization.

- Water
- Monomer(s)
- Emulsifier(s)
- Initiator(Catalyst)
- Reducing Agent and Activator
- Chain Transfer Agent (Regulator, Modifier)
- Buffer
- Preservative
- Post Additives
유화 중합 과정

(2) EMULSION POLYMERIZATION PROCESS

유화중합 방법에 있어서 여러 가지 방법이 있다. 목적하는 POLYMER의 물성과 반응조건, 반응기의 형태와 종류, 생산제품의 용도, POLYMER의 구조 및 단량체의 조성비, 사용촉매의 유형, 반응형태...등의 조건에 따라서 유화중합 과정은 매우 다양하게 진행할 수 있다.

공정의 선택에 따라서 생산된 최종의 액체제품의 전반적인 물성이 상이하게 되므로 과정별에 따라서 가능한한 최적의 공정을 선택하는 것이 대단히 중요하다.

보기: 2-STAGE ACRYL EMULSION POLYMERIZATION

FIRST STAGE:
380G DEIONIZED WATER
25G TRITON X-405
126G ETHYL ACRYLATE (15PPM.MEHG)
54G METHYL METHACRYLATE (17PPM)
5G GLACIAL METHACRYLATE (100PPM)
2ML FERROUS SULFATE SOLUTION (0.1%SOLN)
0.4G AMMONIUM PERSULFATE
0.4G LYKOPON (SODIUM HYDROSULFITE)

SECOND STAGE:
40G DEIONIZED WATER
20G TRITON X-405
145G ETHYL ACRYLATE (15PPM)
70G M.M.A. (17PPM)
4G G.M.AC (100PPM)
2ML FERROUS SULFATE SOLUTION (0.1%)
1.5G AMMONIUM PERSULFATE IN 10ML D.I.WATER
0.5G LYKOPON IN 100ML D.I.WATER
0.2G T.B.H.P (70%SOLUTION) IN 5ML D.I.WATER
PROCEDURE:

<table>
<thead>
<tr>
<th>TIME</th>
<th>TEMPERATURE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>26°C</td>
<td>CHARGE INITIAL KETTLE CHEMICAL & WATER AND HEAT KETTLE TO 80°C WITH N-G. PURGED</td>
</tr>
<tr>
<td>10:00</td>
<td>80°C</td>
<td>ADD BUFFER SOLN, WAIT 3 MIN</td>
</tr>
<tr>
<td>10:03</td>
<td>79°C</td>
<td>ADD INITIATOR, WAIT 2 MIN</td>
</tr>
<tr>
<td>10:06</td>
<td>80°C</td>
<td>ADD REDUCE AGENT & ACTIVATOR, WAIT 2 MIN</td>
</tr>
<tr>
<td>10:08</td>
<td>80°C</td>
<td>ADD INITIAL PRE-MO-EMULSION & RINSE WATER WAIT XX MIN</td>
</tr>
<tr>
<td>10:15</td>
<td>80°C</td>
<td>START FEEDING FIRST STAGE MONOMER MIX. FOR 70 MIN WITH N-GAS PURGE</td>
</tr>
<tr>
<td>11:25</td>
<td>80°C</td>
<td>HOLD 5 MIN-AT 80°C</td>
</tr>
<tr>
<td>11:30</td>
<td>80°C</td>
<td>ADD XX G. IN-PROCESS ADDITIVE HOLD 5 MIN AT 80°C</td>
</tr>
<tr>
<td>11:35</td>
<td>80°C</td>
<td>START FEEDING SECOND STAGE MONOMER MIX FOR 60 min</td>
</tr>
<tr>
<td>12:35</td>
<td>80°C</td>
<td>2ND ST MONOMER MIX ALL IN THE KETTLE, HOLD 30 MIN</td>
</tr>
<tr>
<td>13:05</td>
<td>80°C</td>
<td>COOLING DOWN TEMP. TO 70°C</td>
</tr>
<tr>
<td>13:30</td>
<td>70°C</td>
<td>ADD LST CHASER, WAIT 30 MIN</td>
</tr>
<tr>
<td>14:00</td>
<td>70°C</td>
<td>ADD 2ND CHASER, WAIT 30 MIN COOLING TEMP TO 60°C</td>
</tr>
<tr>
<td>14:30</td>
<td>60°C</td>
<td>ADD POST ADDITIVES HOLD 15 MIN AT 60°C</td>
</tr>
<tr>
<td>14:45</td>
<td>60°C</td>
<td>COOLING DOWN TEMP TO 40°C</td>
</tr>
<tr>
<td>15:00</td>
<td>40°C</td>
<td>ADD NEUTRALIGER, WAIT 15 MIN KEEP COOLING</td>
</tr>
</tbody>
</table>

191
<table>
<thead>
<tr>
<th>TIME</th>
<th>TEMPERATURE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:15</td>
<td>30°C</td>
<td>ADD BACTERICIDE, WAIT 15 MIN</td>
</tr>
<tr>
<td>15:30</td>
<td>28°C</td>
<td>FILTER THROUGH 100 MESHSCREEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHECK OUT PROPERTIES.</td>
</tr>
</tbody>
</table>

CLASSIFICATIONS OF EMULSION POLYMERIZATION PROCESS

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>PROCEDURE CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESS</td>
<td></td>
</tr>
<tr>
<td>CATALYST</td>
<td></td>
</tr>
<tr>
<td>SEEDING</td>
<td></td>
</tr>
<tr>
<td>STAGES</td>
<td></td>
</tr>
</tbody>
</table>

- BATCH
- SEMI-BATCH (GRADUAL)
- CONTINUOUS
- TUBULAR (LOOP)
- THERMAL (REFLUX)
- REDOX
- NON-SEED (INITIAL MONOMER)
- SEED
- SINGLE STAGE
- TWO STAGE
- MULTI-STAGE
7. 유화증합의 내용

유화증합을 만드는데는 다양한 약품들이 사용되고 있으나 그 내용은
대별하여 보면 다음과 같은 부류로 나눌 수 있다.

COMPONENTS OF EMULSION POLYMERIZATION

1. D.I.WATER (물)
2. MONOMERS (단량체)
3. BUFFER
4. CHAIN TRANSFER AGENTS (REGULATOR, MODIFIER)
5. EMULSIFIERS
6. ACTIVATOR AND REDUCING AGENTS
7. INITIATORS
8. PRESER VATIVES
9. POST ADDITIVES

7-1 물

유화증합에서 물의 역할은 매우 크고 중요하며 제조된 애플رن의
물성이 물의 질액에 크게 작용한다. 물은 유화되는 물질의 분산체계로,
충합시 열전달을 용이하게 하고, 유화체, 산합체 및 계약체등의 용액 역할도
한다. 또한 애플رن의 점도를 조정하고 있는데 비교적 높은 고정분이면서
낮은 점도는 애플رن의 갖는 큰 장점의 하나이다.

전연수에는 Ca++, Mg++, Fe++, Al+++같은 다기원속 이온(polyvalent metal
ion)이 존재한다. 이러한 다기원들은 중합반응을 저해하는 힘을
갖고, 생성된 입자를 응집시키기도 한다. Na+, K+, NH₄⁺같은 단기원
도 과량으로 존재하면 다기원이 갖는 약영향을 줄 수 있다. 이온들은 미세
물 파괴작하거나 안정체로 사용되는 유화체를 응집하여 용액을 안정시키기도
한다. 그러므로 유화증합에 사용되는 물은 이온과 염의 함량이 매우 적은 이온
고분자를 사용해야 한다.

― 193 ―
7.2 단량체

에틸렌의 최종물성과 특성은 단량체의 선택에 좌우된다. 모든 중합방법의 영향도 있으나, 중합제의 성질은 사용단량체의 특성과 공중합물질의
의존되고 있다. 그로스건이온, 중합양, 반도, 물에대한 용해도, 중합방지제
의 종류와 함량, 순도(부순물의 함량), 비정, 방점등이 단량체의 선택과 반응
기의 설계에 고려해야 할 중요한 항목이다. 공중합체의 경우에는 반응성비가
공중합의 용이성과 제품의 구조등에 큰 영향이 있음은 주의의 사실이다.

...휘발성...휘발은도...후발범위...특성...중합동의...장르는 안전성...대한.
 중요한 정보이며 특히 기체 단량체인 경우 반드시 감안해야 한다. 에틸렌
이나 프로필렌같이 기체인 경우에는 액체 단량체와는 극히 다르므로, 바트
디엔, 염화비닐, 염화비닐에더등과 같은 성분과 상호 균형에서 가체나 액체가
될 수 있는 물질로 알려져 있는 단량체의 경우에는 응용은 물론 접촉을 피해야
한다.

페인트에 사용되는 바인더의 주류는 크기 재가지로 스테이크, 초판비닐계,
아크릴계로 나눌 수 있다. 그러나 여러 용도 및 특성에 따라 많은 종류의 단량
체가 공중합체로 사용되고 있으므로 위의 분류가 큰 의미가 없는 경우가 많다.
유화상합에 등장하는 단량체를 학적적 조성으로 분해서 다음 각각으로 개별
할 수 있다.

- Hydrocarbons
- Vinyl Esters
- Acrylics
- Polymerizable Acids and Anhydrides
- Esters for Copolymerization
- Allyl Derivatives
- Vinyl Ethers
- Monomers containing Nitrogen

--- 194 ---
<table>
<thead>
<tr>
<th>NAME OF MONOMERS</th>
<th>약 호</th>
<th>화 학 식</th>
<th>TG</th>
<th>C</th>
<th>분자량</th>
<th>비 점</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRYLIC ACID</td>
<td>A.A</td>
<td>CH₂=CH-COOH</td>
<td>103</td>
<td>72</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>ACRYL AMIDE</td>
<td>A.AM</td>
<td>CH₂=CH CO NH₂</td>
<td>153</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACRYLONITRILE</td>
<td>A.N</td>
<td>CH₂=CH CN</td>
<td>105</td>
<td>53</td>
<td>77.7</td>
<td></td>
</tr>
<tr>
<td>N-BUTYL ACRYLATE</td>
<td>B.A</td>
<td>CH₂=CH COO(N)C₄H₉</td>
<td>-55</td>
<td>128</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>N-BUTYL METHACRYLATE</td>
<td>BMA</td>
<td>CH₂=C(CH₃)COO(N)C₄H₉</td>
<td>20</td>
<td>142</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>ISO-BUTYL METHACRYLATE</td>
<td>BMA</td>
<td>CH₂=C(CH₃)COOCH₂CH₂CH(CH₃)₂</td>
<td>67</td>
<td>142</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>ETHYL ACRYLATE</td>
<td>E.A</td>
<td>CH₂=CH-COO C₂H₅</td>
<td>-24</td>
<td>10</td>
<td>99.5</td>
<td></td>
</tr>
<tr>
<td>ETHYL METHACRYLATE</td>
<td>E.M.A</td>
<td>CH₂=C(CH₃)COO C₂H₅</td>
<td>65</td>
<td>114</td>
<td>116.5</td>
<td></td>
</tr>
<tr>
<td>2-ETHYL HEXYL ACRYLATE</td>
<td>2EHA</td>
<td>CH₂=CHC00CH₂CH(C₂H₅)C₄H₉</td>
<td>-82</td>
<td>184</td>
<td>125/60</td>
<td></td>
</tr>
<tr>
<td>N-HEXY METHACRYLATE</td>
<td>N-HMA</td>
<td>CH₂=C(CH₃)COO(N)C₆H₁₃</td>
<td>-5</td>
<td>170</td>
<td>68/5</td>
<td></td>
</tr>
<tr>
<td>LAURYL METHACRYLATE</td>
<td>LMA</td>
<td>CH₂=C(CH₃)COO C₁₂H₂₅</td>
<td>-65</td>
<td>254</td>
<td>142/4</td>
<td></td>
</tr>
<tr>
<td>LAURYL ACRYLATE</td>
<td>L.A</td>
<td>CH₂=CH COO C₂₁H₂₃</td>
<td>-70</td>
<td>346</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MALEIC ACID</td>
<td>M.A</td>
<td>COOH-CH=CH-COOH</td>
<td>130</td>
<td>116</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>METHACRYLIC ACID</td>
<td>MAA</td>
<td>CH₂=CHC(CH₃)COOH</td>
<td>185</td>
<td>86</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>METHYL METHACRYLATE</td>
<td>MMA</td>
<td>CH₂=C(CH₃)COOCH₃</td>
<td>105</td>
<td>100</td>
<td>100.3</td>
<td></td>
</tr>
<tr>
<td>ISOPROPYL METHACRYLATE</td>
<td>IPMA</td>
<td>CH₂=C(CH₃)COOCH(CH₃)₂</td>
<td>81</td>
<td>128</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>ISOPROPYL ACRYLATE</td>
<td>IPA</td>
<td>CH₂=CH COO CH(CH₃)₂</td>
<td>-5</td>
<td>114</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>ITACONIC ACID</td>
<td>IA</td>
<td>CH₂=C(CH₂COO)COOH</td>
<td>87</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLYCIDYL METHACRYLATE</td>
<td>GMA</td>
<td>CH₂=C(CH₃)COOCH₂CH₂CH₂</td>
<td>46</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-METHYLOL ACRYLAMIDE</td>
<td>N.MAA</td>
<td>CH₂=CHCONH CH₂OH</td>
<td>80</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METHYL ACRYLATE</td>
<td>M.A</td>
<td>CH₂=CH COOCH₃</td>
<td>9</td>
<td>86</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>STYLENNE MONOMER</td>
<td>SM</td>
<td>CH₂=CH-CH=CH₂</td>
<td>100</td>
<td>104</td>
<td>45.8</td>
<td></td>
</tr>
<tr>
<td>VINYL ACETATE</td>
<td>V.A</td>
<td>CH₂CH-COOCH₃</td>
<td>28</td>
<td>86</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>V.C</td>
<td>CH₂=CHCL</td>
<td>80</td>
<td>62.5</td>
<td>-13.9</td>
<td></td>
</tr>
<tr>
<td>VINYL BENZOATE</td>
<td>V.B</td>
<td>CH₂=CH COO C₆H₅</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-VINYL PYRROLIDONE</td>
<td>N-V.P</td>
<td>CH₂C(O)N(CH=CH₂)CH₂CH₂</td>
<td>86</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 VINYL PYRIDINE</td>
<td>2VP</td>
<td>CHCH CHCH₃(CH=CH₂)N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VINYL TOLUENE</td>
<td>V.T</td>
<td>CH₂CH=CH₂</td>
<td>107</td>
<td>116</td>
<td>D52/9</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>X</td>
<td>Monomer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>COOH</td>
<td>Acrylic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOH</td>
<td>Methacrylic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂COOH</td>
<td>COOH</td>
<td>Itaconic acid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CONH₂</td>
<td>Acrylamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CONH₂</td>
<td>Methacrylamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>OCH₂CH₂NH₂</td>
<td>2-Aminomethyl vinyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₂N(CH₃)₂</td>
<td>Dimethylaminoethyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₃NH(CH₃)₃</td>
<td>tert-Butylaminoethyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CONHCH₂OH</td>
<td>N-Methylole acrylamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CONHCH₂OH</td>
<td>N-Methylole methacrylamid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>COOCH₂CH₂CO₂H</td>
<td>Glycidyl acrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₂CO₂H</td>
<td>Glycidyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CH₂OCH₂CH₂CO₂H</td>
<td>Allyl glycidyl ether</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>COOCH₂CH₂OH</td>
<td>2-Hydroxyethyl acrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₂OH</td>
<td>2-Hydroxyethyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>COOCH₂CH₂(OH)CH₃</td>
<td>2-Hydroxypropyl acrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₂(OH)CH₃</td>
<td>2-Hydroxypropyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CHO</td>
<td>Acrolein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>CHO</td>
<td>Crotonaldehyde</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>RNH₂</td>
<td>Alkyl methylol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>COOCH₂CH₂CO₂H</td>
<td>Allyl acrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>[CH₃]</td>
<td>Vinyltoluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>COOC₂H₄OCH₂CH₂</td>
<td>2-Allyloxyethyl acrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOC₂H₄OCH₂CH₂</td>
<td>2-Allyloxyethyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>CH₂O</td>
<td>Allyl alcohol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₂CO₂H</td>
<td>Allyl methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂COCH₂CH₂CO₂H</td>
<td></td>
<td>Diallyl succinate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₂COCH₂CH₂CH₂</td>
<td>COOCH₂CH₂CO₂H</td>
<td>Diallyl itaconate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃</td>
<td>COOCH₂CH₂OOC₂CH₃</td>
<td>Ethylene glycol dimethacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table X. Reactivity Ratio in Copolymerization.

<table>
<thead>
<tr>
<th>MN</th>
<th>M2</th>
<th>r1</th>
<th>r2</th>
<th>Temp, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VC</td>
<td>MA</td>
<td>0.083</td>
<td>9.0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>MMA</td>
<td>0.1</td>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>S</td>
<td>MA</td>
<td>0.68</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EA</td>
<td>1.01</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>0.80</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>2-EHA</td>
<td>0.94</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td></td>
<td>55</td>
<td>0.01</td>
<td>60</td>
</tr>
<tr>
<td>VICl</td>
<td></td>
<td>2.0</td>
<td>0.14</td>
<td>60</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>2.0</td>
<td>1.40</td>
<td>5</td>
</tr>
</tbody>
</table>

7-3 유화계

유화계는 계면활성제 (surfactant) 로써 유화중합에서는 필 요블 개만 것이 다. 상세한 것은 이리 발표되어 있으며 51 생략하고 개략 적인 것만 소개하고자 한다.

유화계는 반응초기에 미세이나 단량체로 행운된 임자를 형성시켜 반응을 할 수 있는 장소를 제공한다. 또한 단량체 역할을 보는 역할을 하여 단량체 공급원을 안정시킨다. 반응이 점차 진행되면 임자는 적고 단량체 역할의 크기는 작아져서 유화계가 단량체 임자에서 임자포먼으로 이동한다.

유화계는 친수성 (hydrophilic), 과 진유성 (lipophilic)을 공히 보유하고 있기 때문에 과양의 사용은 물이나 기름에 대한 저항성을 저하시킬 수 있으므로 주의해야 한다. 내마모성의 저항나 기포의 발생원인도 될 수 있다.
유화제는 비이온성 (nonionic), 읍이온성 (anionic), 양이온성 (cationic) 양폭이온성 (amphoteric or zwitterionic)으로 나눌 수 있는데 읍이온성과 비이온성이 유화중합에 많이 사용된다. 양이온성과 양폭이온성은 구체 형성의 경우에 사용되고 있다. Table XI. 은 유화제의 종류를 화합
적 조성으로 분류한 것인데 종류도 많고 재조언도 많아 52 다 얻기하기는 어렵다.

Table XI. Classification of Emulsifiers

<table>
<thead>
<tr>
<th>Class</th>
<th>Chemical Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anionic</td>
<td>Fatty Acids</td>
</tr>
<tr>
<td></td>
<td>Sulfates</td>
</tr>
<tr>
<td></td>
<td>Sulfated fatty alcohols</td>
</tr>
<tr>
<td></td>
<td>Sulfates of ethoxylated alcohols</td>
</tr>
<tr>
<td></td>
<td>Sulfated natural oils and esters</td>
</tr>
<tr>
<td></td>
<td>Sulfonates</td>
</tr>
<tr>
<td></td>
<td>Sulfonated aromatic and condensed ring compounds</td>
</tr>
<tr>
<td></td>
<td>Aliphatic chain sulfonates</td>
</tr>
<tr>
<td></td>
<td>Phosphates</td>
</tr>
<tr>
<td></td>
<td>Fluorochemicals</td>
</tr>
<tr>
<td>Nonionic</td>
<td>Polyethylene Oxides</td>
</tr>
<tr>
<td></td>
<td>Alkyl ethers</td>
</tr>
<tr>
<td></td>
<td>Alkylaryl ethers</td>
</tr>
<tr>
<td></td>
<td>Fatty acid esters</td>
</tr>
<tr>
<td></td>
<td>Alkylamines</td>
</tr>
<tr>
<td></td>
<td>Polyoil Esters</td>
</tr>
<tr>
<td></td>
<td>Glycerine</td>
</tr>
<tr>
<td></td>
<td>Sorbitane</td>
</tr>
<tr>
<td></td>
<td>Sugar</td>
</tr>
<tr>
<td>Cationic</td>
<td>Amines</td>
</tr>
<tr>
<td>Amphoteric</td>
<td>Quaternary Ammoniums</td>
</tr>
<tr>
<td></td>
<td>Carboxylates</td>
</tr>
<tr>
<td></td>
<td>Aminocarboxylates</td>
</tr>
<tr>
<td></td>
<td>Betaine</td>
</tr>
<tr>
<td></td>
<td>Sulfonates</td>
</tr>
</tbody>
</table>
비이온성은 음이온성보다 유화효과가 더해져지고 생성 임자도 크다. 따라서 유화중합에는 음이온성 유화제를 많이 사용하는 데 같은 유화제라도 농도가 높음수록 임자도 작아진다. 또 하나의 중요한 유화제 역할은 표면장력 및 계면장력의 저하이다. 페인트와 같이 피드제에 포딩되는 물질은 낮은 계면장력이 요구되는데 그 이유는 피드제에 고르게 포딩시키기 위함이다. (smooth wetting) 만일 포딩제의 표면장력이 높으면 피드제에 잘 묻지 않는다면, 유화제가 포딩제의 표면장력을 크게 저하시키고 있다. 음염전은 물이 분산액체이고 물은 72 dynes/cm의 비교적 높은 표면장을 보유하고 있어 피드제에 쉽게 묻지 않는다. 그런데 유화제를 사용하여 제조된 음염전의 표면장력은 대략 30~35 dynes/cm의 범위에서 양호한 피징성을 갖고 있다.

비이온성 유화제에서 전류성과 전유성의 정도를 나타내는 적도로 HLB (hydrophile-lipophile balance)를 사용하고 있는데 이의 상세한 설명과 몇 가지 계산법은 다른 문헌을 참고하기 바란다. 51

음염전이나 백합된 페인트에서 유화제가 갖는 부수적인 효과는 냉동제작성, 가격적 안정보, 전력절이 향상 안정을 향상시키고 있다. 음이온성과 비이온성을 같이 사용하는 수가 많은데, 이때 음이온성이 주 유화제 (primary emulsifier)로 사용되고, 비이온성은 보조 유화제 (secondary emulsifier)로 이용되는 경우가 많다. 생성된 입자의 안정성을 높이기 위해 반응후 유화제를 따로 절가 (post addition)하는 경우가 많으며 이때는 비이온성의 대용량이다.
7-4 계시제

계시제의 분해는 반응을 일으키는 자유 화학물질을 생성하게 되는데 유화종합에는 주로 수용성 물질을 사용한다. Persulfate 염이나 과산화수소용질이 많이 사용되는데, 특히 sodium, potassium, ammonium persulfates가 주로 사용된다. Table XII는 두 persulfate 염의 물에 대한 용해도를 나타내고 있다.

Table XII. Solubility of Persulfate Salts in Water (g/100g H₂O)

<table>
<thead>
<tr>
<th></th>
<th>0°C</th>
<th>20°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂S₂O₈</td>
<td>1.77</td>
<td>5.3</td>
<td>10.0</td>
</tr>
<tr>
<td>(NH₄)₂S₂O₈</td>
<td>58.2</td>
<td>-</td>
<td>very high</td>
</tr>
</tbody>
</table>

계시제는 열 또는 환원제에 의해 분해된다. Persulfate의 경우는 식(26)과 같이 이온화된 상태로 생성된다.

\[\Theta O_3S-0-0-SO_3^- \xrightarrow{k_d} 2SO_4^2- \]

생성된 이온화된 상태가 안정하게 분해되어 반응이 일어나게 되는데 반응속도는 계시제의 분해 상수 (kd)에 의존한다. 분해상수는 계시제의 효율, 용액성, 온도, 농도, 반응기 (t½), 안정성의 종합금지, 물질물질의 탐탁도, 수 환원제나 활성성 계시제의 유무에 따라 다르다.

계시제의 반응중 반감기 (half life)는 일정한 온도에서 계시제의 반이 분해하는 시간을 나타내는 것으로, 너무 빠르거나 느리지 않은 물질로 유화종합에는 0.5-20시간의 반감기를 갖는 계시제를 사용하고 있다.
가시계의 효율은 개시계가 분해하여 탄디말을 형성하는 효율인데 유효성인
아스 빌드물 개시계의 효율은 1.0 에 가까우나, 개산화물은 생성된 탄디말이
다른 물질과의 반응성이 높아 실제 중합에 참여하는 탄디말은 0.3-0.6 정도의
효율을 나타내고 있다. Persulfate 의 효율은 높은 편이어서
0.01M K$_2$S$_2$O$_8$ 이 pH 10 에서 생성되는 탄디말수는 50℃ 에서
8.4 x 1012 radicals/ml.sec 이고, 70℃ 에서는 1.8 x 1014,
90℃ 에서는 2.5 x 1015 개가 되고, 50-90℃ 의 범위에서 활성화
에너지 (activation energy) 는 33.5 Kcal/mole 이다. 54, 55

Table XIII 은 여러가지 개시계의 활성화에너지, 분해속도, 반응기동
을 나타내고 있다. 대부분 단독 개시계를 사용하지만 높이상의 개시계를 사용
하기도 한다. 예를 들어 중합 개시계로 (NH$_4$)$_2$S$_2$O$_4$ 를 사용하고, 미반응
단량체를 없애기 위해 완전계와 같이 다른 개시계를 사용하는 경우도 있다.
7-5 환원계와 활성제

산화 환원을 이용한 유화증합법에는 개시제를 본책시지는 환원계 (reducing agent)가 필요하다. 활성제 (activator)는 환원계의 역할을 보조하여 타액물 생성물을 더 쉽게 해주는 물질로 (promoter, 학교도 참). 1932년 처음 Haber 와 Weiss 56. 에 의해 알려졌으나 유화증합에 이용되는 극히 최근의 일이다.

환원계로 사용되고 있는 것은 sodium bisulfite (NaHSO₃), Sodium metabisulfite (Na₂S₂O₅), Sodium hydrosulfite (Na₂S₂O₄), Sodium thiosulfate (Na₂S₂O₃), Sodium formaldehyde sulfoxylate (NaHSO₄·CH₂O·2H₂O) 등이 있다. 활성제로는 ferrous sulfate (FeSO₄·7H₂O) 와 ferrous ammonium sulfate (Fe(NH₄)₂(SO₄)₂·6H₂O) 가 주로 이용되고 있다.

개시제의 본책에 있어 환원계와 활성제의 영향은 특히 활성과 역지를 저하시키는데 효과적이어서 persulfate 의 경우 33.5 Kcal/mole 이던 것이 환원계와 활성제가 있으면 12 Kcal/mole 로 저하된다. 57

말단기 분석에 의해 밝혀진 계수는, persulfate 개시제는 온도, 액체 식 (26) 에 따라 SO₃²⁻ 가 생성되어 반응을 개시하지만 식 (27) 과 같이 물과 반응하여 생성된 수산기도 반응에 참여할 수 있음을 밝혀졌다. 58

\[\text{SO}_4^{2-} + \text{H}_2\text{O} \rightarrow \text{HSO}_4^- + \cdot \text{OH} \quad (27) \]
환원체의 본질로 Sulfate 와 sulfonate 가 생성되는데, 완성체의 본질로 탄디말 반응을 구는 좁 더 복잡해진다. Thiosulfate 의 완성체를 사용한 반응을 구는 다음과 같이 주축되고 있다.

\[
S_2O_8^= + Fe^{++} \rightarrow SO_4^{=} + SO_4^= + Fe^{+++} \quad (28)
\]

\[
S_2O_8^= + 2S_2O_3^= \rightarrow S_4O_6^= + 2SO_4^{=} \quad (29)
\]

\[
Fe^{+++} + 2S_2O_3^= \rightarrow Fe^{++} + S_4O_6^= \quad (30)
\]

질 이온이 있으므로 탄디말 생성물은 환원체가 개시된 농도보다 질이온의 농도에 크게 의존하고 있다. 그리므로 반응속도를 결정하는 단계는 식(30)으로써 ferrous \(\rightarrow\) ferric \(\rightarrow\) ferrous 의 순환반응이 매우 중요한 역할을 하게 된다. 이러한 순환은 환원체가 있는만 계속된다. 근데 이와 일맥상통한 반응물이 Fe^{++} 와 Fe^{+++} 는 종합중이나 최중액물질의 안정성에 크게 영향을 미치므로 반드시 적은 양을 사용하는 것이 좋다. 탄극적인 사용량은 단량체에 대해 0.001 mole % 정도이지만 반응 후 질분을 체제해야 할때 ethylene diamine tetraacetic acid 의 염 곡은 chelate 를 경과하여 작화합물 (complex) 을 만들 수도 있다.

7-6 Chain Tranfer Agent

자유 탄디말은 주로 단량체를 공격하여 고분자를 형성하지만 반응물 내의 여러까지 다른 물질로 탄디말이 이동할 수 있다. 주로 수소나 페로겐 연소를 공유하는 탄소로 공격하게 되는데, 성장하는 고분자에 있는 탄디말을 공격할 때는 경질반응이 일어나고, 탄디말이 원유된 세로운 반응장소가 생겨 다시 반응이 진행되게 된다. 이러한 반응은 고분자의 분자량을 조절하는 역할을.
라디 말의 이동을 쉽게 해주기 위해 점가되는 물질을 chain transfer agent (regulator, modifier) 라 한다. 주로 알로겐이나 유항을 포함하는 화합물들이 다. Chain transfer agent의 분자량에 대한 변화는 관단하게 식(31)로 나타낼 수 있다.

\[\frac{1}{P} = \frac{1}{P_0} + C_s \frac{[C]}{[M]} \]
(31)

여기서 \(P = \) Chain transfer agent가 있을 때의 중합도
\(P_0 = \) 없을 때의 중합도
\(C_s = \) Chain transfer constant
\([C] = \) Chain transfer agent의 mole 농도
\([M] = \) 단량체의 mole 농도

식(31)보다 좀 더 복잡하고 임계하게 다르게들은 다른 문헌을 참고하기 바란다. 60, 61

라디 말의 여러문자에 대한, 즉 단량체, 고분자, 즉 대, 용제 및 역타론 점가계에 대한 chain transfer constant의 값이 주어져 있다. 50, 51 그러나 같은 물질에 대한 보고의 차이가 많이 나고 있다. Table XIV는 일반적으로 사용되는 chain transfer agent의 몇 가지 고분자에 대한 chain transfer constant \(C_s \)를 나타내고 있다.
Table XIV. Chain Transfer Constants for Various Agents to Polymers (C_s/Temperature, °C)

<table>
<thead>
<tr>
<th>Agent</th>
<th>PMMA</th>
<th>PS</th>
<th>PVAc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon tetrachloride</td>
<td>0.27/60</td>
<td>0.0133/80</td>
<td>0.96/60</td>
</tr>
<tr>
<td></td>
<td>0.33/80</td>
<td></td>
<td>1.05/75</td>
</tr>
<tr>
<td>Chloroform</td>
<td>14/80</td>
<td>0.015/60</td>
<td>0.0554/70</td>
</tr>
<tr>
<td>Carbon tetrabromide</td>
<td>2.2/60</td>
<td>739/60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.3/80</td>
<td></td>
<td>2.87/70</td>
</tr>
<tr>
<td>1-Butanethiol</td>
<td>0.66/60</td>
<td>22/60</td>
<td>48/60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17/80</td>
<td></td>
</tr>
<tr>
<td>Ethanethiol</td>
<td></td>
<td>17.1/50</td>
<td></td>
</tr>
<tr>
<td>Benzenethiol</td>
<td>2.7/60</td>
<td>0.08/99</td>
<td></td>
</tr>
<tr>
<td>t-Butyl mercaptan</td>
<td>0.18/60</td>
<td>3.6/60</td>
<td></td>
</tr>
<tr>
<td>Dodecanethiol</td>
<td></td>
<td>19/60</td>
<td></td>
</tr>
<tr>
<td>Thiophenol</td>
<td>2.2/60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylmercaptoacetate</td>
<td>0.63/60</td>
<td>58/60</td>
<td></td>
</tr>
</tbody>
</table>
7-7 완충제

유화중합은 통상 산성에서 반응이 진행된다. 그러나 산이나 기능성
단량체를 함유할때 반응시의 pH가 변하는 경우가 많이 관찰되는데 반응
시의 pH를 안정화시키는 것이 완충제(buffer)이다. 완충제는 또한
계시제의 용해도를 일정하게 유지시키는 역활도 한다. 완충제로 쓰이는 것은
Sodium carbonate (Na₂CO₃), sodium bicarbonate (NaHCO₃), ammonium
carbonate ((NH₄)₂CO₃), monosodium dihydrogen phosphate (NaH₂PO₄),
disodium hydrogen phosphate (Na₂HPO₄)등이다.

7-8 방부제

앤멜건은 금방이나 백테리아가 서식할 수 있는 조건을 갖고 있어
저장 안정성을 위해서는 방부제가 필요하다. 금방이나 백테리아는 유화제나
천연에서 유도된 젤질물을 먼저 공격을 하는데 이때 앵멜건은 물성의 변화
를 초래한다. 젤도의 상승이나 저하, 결착나 응집, 점진, pH의 저하,
약취, 동위전상이 관찰된다.

수성페인트에 사용되는 방부제62를 사용할 수도 있으나 앵멜건에
사용되는 방부제는 고체 용량 제, 페놀제, 알데히드 계, 구리나 주석 계, 낙
테네이트 계, 수은 계등이 있다. 수은 계는 독성 때문에 선진국에서는 사용이
금지되어 있다. 그러므로 수은 계의 방부제를 다른 종류보다 좋다. 엠폴리
floor polish 응 앵멜건의 방부제로 수은 계를 쓰면 50-300 ppm
이면 충분히 작용하게 되며 1-(3-chlorallyl),3,5,7-triaza-1-azoni-
aadamantane chloride (Dowicil)63는 700-800 ppm 이 요구되고 있다.
7-9 추첨가제
반응완료된 엘킬렌은 pH, 점도, 혹은 다른 특성을 위해 액체가져
추첨가제를 투입하기도 한다. 유화중합은 반응이 산성면에서 진행되는 수가
많아 반응완료 후 pH 를 높여 안정성을 부여하고 불필요한 부수적인 반응
을 방지하고 있다. 액체털 에틸렌의 경우 반응 후 pH 는 대략 2.0-3.0으로
적정 산성을 나타내고 있는데 pH 가 9.5-10.0이 되도록 조정한다. 스케일
제작 조산비닐제는 이보다 낮게 조정하는 것이 보통이다. NaOH, NH₄OH 를
많이 사용하고 드물지만 dimethylamino ethanol 같은 것도 사용되고
있다.

엘킬렌의 점토조절제는 수용성 거품차량중질을 많이 사용하고 있는데
hydroxyethyl cellulose, carboxymethyl cellulose, ethylene oxide
나 이와 유사 다른 물질이 이용되고 있다. 최근에 소개된 외합성 중점제도
사용될 수 있다. 64 그러나 엘킬렌의 안정성이 저하되지 않도록 주의해야
한다. 엘킬렌의 안정성을 항상시키고 다른 물질에 대한 민감도를 저하시키기
위해 점토조성제를 투입하기도 하는데, 이때는 대부분 비유온 성 점토조건제를
사용한다.

다른 액체가져 특성을 위해 점가되는 물질은 패인트의 비합식 사용될
수도 있으나 엘킬렌에 점가되기도 한다. Anti-skinning agent, anti-caking
agent, antimicrobial, antioxidant, antistat, colorant, corrosion
inhibitor, defoamer, dispersant, fluorescent, fungicide, lubricant,
plasticizer, release agent, solubilizer, solvent, suspending agent,
UV absorber 등이 있다.
8. 유화 중합 생산관리 (MANUFACTURE OF EMULSION POLYMER)

8-1. 유화중합의 생산공정

앞서 여러가지 실험실적 창법을 설명하였으나 여기에서는 공장제조 과정을 설명하고자 한다. 현장 제조 작업에는 여러가지 부대시설이 필요하며 안전관리 문제, 작업공정의 신속화, 폐수관리, 종업원의 건강관리...등의 다양한 문제들이 생산공정에 직접적인 관계를 지니고 있다.

생산공정에서 제일 중요한 부분은 반응기입니다. 반응기의 저질이산, 알카리에 견딜 수 있는 스테인레스 304나 316으로 만들어지며, 가열과 냉각이 용이하여야하며, 운도의 변화를 작업자가 쉽게 파악할 수 있어야하고, 단방체의 깨서나 녹색을 작업자가 건강상의 피해를 없도록 해야하고, 작업조건을 최선으로 양호하게 주어야한다.

반응은 대부분 상업 반응을 진행하나 경우에 따라서 압력이 필요할 경우가 있으니 반응기 설계부터 고려되어야 한다. 고반기도 반응기와 동일한 저질로 제작하는 편이 좋으며 두단변속기를 사용하여 반응조건에 따라 연속적 최적속도로 조절하도록 해야한다.

보통고반기의 회전속도는 최저 10RPM에서 180RPM정도가 많이 사용되고 있다.

모노머혼합탱크는 납작수를 이용하여 모노머 혼합물을 주입하는 동안 운도의 상승을 저치할 수 있는 납작 코-일을 넣는 편이 좋다.

반응기는 밀폐식이 좋으며 반응물의 주입은 반응탱크의 내부에 투입하는데 벽이나 고반기의 날개에 닿지 않고 반응물에 직접 주입 되는 것이 좋다.

고반기의 속도는 매우 중요하며 단방체의 안정화로 단방체의 성장 임자의 확산속도를 조정하고 목적이 입자크기의 횡단과 유화제의 이동...등을 용이하게하며 열전달의 효율이 높아지고 있다.

축매와 단방체의 분산 반응을 단시간내에 최고의 효율이 있도록 최적화하며 국부적인 집연상(TROMMSTDORF EFFECT)을 방지해야 한다.

반응온도의 선택은 축매의 선택에 따라 다르고 최종 물성을 감안하여 반응형태를 취하여서 즉 분자량, 분자방법, 입자크기, 반응속도, 중합방법 수용방향 등을 고려하여 최적의 방법을 구상하여야한다.
Legend
- SS - Stainless steel
- F - Filter
- M - Meter
- RM - Rotameter
- TKO - Tankometer
- CAT - Initiator
- ACT - Activator
- FE - Filtration equipment
- P - Pressure indicator
- TH - Thermometer
- ARR - Flame arrester

Plant for Emulsion Polymerization
8-2. 현장 생산작업

앞서 연구실에서 수차례의 합성실험을 거쳐고 또한 현장실험을 마치면 수요자의 요구에 충족하기 위하여 현장작업으로 진행하게 된다.
현장의 작업은 연구실 작업과 유사하겠지만 일반적으로 다양한 제품을 만들게 되므로 작업공정상에는 여러가지 문제점들이 발생하게된다.
이 문제점들을 없애고 우수한 제품을 만들기 위해서는 다음과의 점들을 유의하여 진행해야한다.

(1) 반응수에 사용하는 물은 최소한 D.I.WATER를 사용하도록 권장한다.
반응수 사용시에 용량을 정확하게 정량이 자동으로 주입할수 있도록 시설을 하기 바라며, 납작할수록 정량 조정이 자유로운 시설이 매우 중요하다.

(2) 단량체와 분산제 및 물, 기타 물질과의 혼합용액에서 모노머-예열존을 만드는데 교반속도를 조절하는데 꼭필히 신경을쓰고 단량체 분산이 완전시에는 지속적인 교반보다는 정지 해두었다가 모노머-예열존의 주가 시간에 따라서 20분 또는 30분 간격으로 2-3분만 재교반을 해주면서 계속적으로 추가하면 모노머-예열존의 중분히 현상이 없으리라 생각한다.
어떤 경우에는 계속적으로 교반을하면 도피여 모노머-예열존의 중분히 현상이 이루어지게되어 도피여 나쁜 영향을 미치게되는 경우가 발생한다.
모노머-예열존을 안전주가 후에는 반드시 체척수의 정량으로 펌프를 깨끗이 마무리하여주고 추후 완전 반응을 마친후에 다시 체척하도록 권장한다.
모노머-예열존의 주입시에는 가급적으로 정량PUMP을 사용하여 주가시간내에 또는 작업조건을 만족할수있는 주입시설을 초기 종장건설에서부터 완전하게 시설을 보안해 주는 편이 보통적이다.

(3) 반응탱크에 필요한 시설은 반응조건에 따라 다르겠으나 어떤 개시계의 경우를 막하는데 반응탱크에 COFEED 개시계나 환원제 및 활성제를 별도로 주입할수있는 조건의 시설이 부적절로 필요하며 반드시 스테인레스-스티로 재질이 갖추어 지어야하며 주가시간을 적절히 조절할수 있어야한다.
현장 작업자들의 타이밍 관리가 대단히 중요하오니 아울러 PROCESS에 대한 교육이 먼저 작업진행전에 선행 되어야한다.
경우에 따라서 IN-PROCESS ADDITIVE가 필요하게되니 반응탱크를 열지 않고서 주입할수 있는시설도 필요로 합니다. 반응온도의 변화를 기록화하며 작업자가 쉽게 읽을수 있도록 되어야한다.
한편 초기 반응시에 반응탱크내의 반응액밀존의 표면에 산소의 접촉을 차단하고 반응의 원활을 위해서 질소 캐스를 주입하는데 불편이 없도록 질소-캐스 라인이 반응기에 부착되어야 한다.
고반기는 반드시 자유속도 조절용 모-허를 사용하도록 하여 최전속도를 반응의 진행과 포리미의 형태에 따라서 자유롭게 조절이 필요하다.

(4) 기 boca 특별한 설비들이 필요하다. 소량의 단량체 첨가시나, 반응중간에 첨가할 첨가제의 주입시, 뷔멘드시 첨가할 경우등을 고려하여서 특수-펌프나 초작하기 쉬운 펌프가 요구된다. 반응도중 내용물을 관찰할수있는 10MM 두께이상의 SIGHT GLASS가 필요하며, 반응중에 SIGHT GLASS에 물방울이 달라 붉지 않도록 해주어야 한다.
CONDENSER와 반응기와의 결합된 REFLUXING 관찰용으로 SIGHTGLASS 설치에는 잔여MONOMER에 의해서 POLYMER가 SIGHTGLASS에 축적되지 않도록 세심하게 설계되어야 한다.
CONDENSER 역시 사용모노머와 반응 시스템에 따라 다르지만 장기가 반응기를 연속적으로 사용시 콘덴서의 냉각코일이 POLYMER에 의해 막히지 않도록 설계되어야 한다.

(5) FILTERATION 시설에 있어서는 제품생산 기술에 따라서 다양하게 다르게 되며 생산제품에 따라서도 FILTER의 정도가 다르게 된다. 예를들면 페인트용 수지는 100 MESH-120 MESH를 사용하고 프린트 잉크용 수지는 150-200MESH, PADDING용 수지는 120-150MESH등을 사용하고 있다.
여과의 과정에 있어서는 스크린 여과법(SS-304,SS-316)및 여과포법, 클로어여과법, 완통형 스크린 여과법등 다양하게 이용되고 있다.

(6) 포장 및 저장과정
제품을 생산후 여과 과정을 거쳐 포장을 하는데 25KG,50KG,100KG,200KG

— 212 —
동의 D/M포장을 하는데 작업자의 수고와 포장시험 캐스통의 환경공해를 최소한으로 줄이는데 노력해야하며 제품의 저장을 위해 창고에 이송과정과 수요자에 납품할때의 출하과정을 편리하고 효율성이 있도록 시설을 설계 되어야한다. 또한 TANK ROLLER로 이송시에는 별도의 대형 저장탱크나 이송 점프시설이 필요로 하게된다.

그러하여 제조회사의 환경에 맞도록 최적의 시설을 요구된다.
특별히 동결기에 영향의 온도에 영리지 않도록 주의가 요구된다.

(7) 잔여 모노머 개선책

이 문제는 모노머에서부터 에틸렌 중합반응을 진행시키는 과정에서 반응을 잘 진행시키어서 잔여 모노머가 최저 0.01%-0.05% 이하가 되도록, 유화중합 기술에서 대단히 중요한 문제임이다. 잔여 모노머가 남겨지는 요인은 여러가지 조건이 복합적으로 연결되어 있다.
 즉 반응조건, 반응온도, 개시제량 및 첨가방법, IN-PROCESS ADDITIVE 주가시점, CHASER SYSTEM방법, POST ADDITIVES주가 시점, 접도...등에 의해서 잔여 모노머를 줄일수 있다. 그러하여 선진국의 제품수준의 최저율의 잔여 모노머를 낮추고 노력해야 한다.

만약에 잔여 모노머가 많은 양으로 제품자체의 품질은 물론 제품이 가공제품에도 나쁜 영향을 미치게 되므로 섬실한 주의를 갖고 품질의 기술관리에 관성을 갖어야한다. 세부적인 기술적 문제는 이지면에서는 사정상 생략합니다.

(8) 청소 문제

반응탱크나 모노머 MIXING탱크, 드럼탱크, 또는 부 mennye 탱크 등의 포리머를 사용후의 청소문제가 매우 중요한 문제이다. 그러하여 포리머를 제거하기전에 깨끗한물로 세척할수있는 준비물을 미리 준비하여 포리머가 공기의에 의해 건조 되어 도막 또는 피막이 형성될수있으니 이런 경우 또는 도막이 마르기전에 고압세척기로 탱크의 벽면과 고반기등에 담아 있는 포리머를 깨끗이 제거하여 주어야한다. 그러나 반응탱크를 제외한 다른 탱크는 청소하기가 용이하지만 반응탱크는 계속적인 중합반응으로 인하여 반응기력과 고반기에 포리머 도막이 두껍게 형성되기전에 주기적으로 가성상소 15%로 용액으로 세척주면, 깨끗하게
청소할 수 있다. 이 경우 약 1-3%의 활성 암모니아수를 첨가 해주는 것이 효과적이다. 만약 이런 공정의 청소를 주기적으로 못할 시에는 최소한 압력 물층으로 깨끗이 청소하여 다음 작업의 제품에 영향을 미치지 않도록 석적을 하되 최소한 3일-4일내에는 사람의 인력으로 반응기안에 들어가서 청소를 하든지 용액을 사용하여 장시간 REFLUXING 방법으로 청소를 해야 한다.

청소가 마침 후에, 또 다시 깨끗한 D.I WATER로 석적하여서 다음작업에 지장이 없도록 해야 한다.

(9) 폐수 처리 문제

여명콘도미니 제조회사의 폐수문제는 매우 심각한 문제이다. 여기에는 각종 계면활성제, 표면미, 무기물 ... 등의 폐수처리 공정이 쉽게 여겨지며 처리하여 깨끗한 물(폐수허용기준치)로 방류하기란 많은 폐수시설의 공정을 거쳐야만이 깨끗한 물로 방류하게 된다. 환경 정화 사업단면에서 대기폐수 및 폐수 정화시설을 갖 필요를 갖게 되므로 필히 심심한 시설이 주목된다.

추천하고 싶은 공정은 다음과 같은 공정이 필요하다.

공장및연구실 → 1차 거친과정 → 저장조및 포기조 → 분비침전탱크 → 약품처리조 및 용접 → 2차거친과정 및 FILTERPRESS → ION교환수지+활성탄처리 → 가변침김 → FILTERPRESS → 방류 → OK.

위와같은 공정을 거친 폐수는 폐수 허용 기준치내에 도달하여 환경청의 제한을 받기않은 모범 폐수로 합격되며 이러한 생각한다. 폐수문제는 매우 심각하게 다루어져서 환경공해의 주범이라는 오명을 훔쳐 비려야 한다.
9. 영업존 수지의 품질관리

여기에서 언급하고자 하는 수지의 품질관리는 K.S 나 A.S.T.M에서 말하는 규격에 의한 품질관리 보다도 영업존포리머의 생산관리와 품질관리 측면에서
수요자들의 품질관리와 제품관리를 진행하는데 필요한 품질관리면을 기술하고자한다.
품질관리상의 여러 가지 항목이 있으나 많이 사용되고 있는 본계만 다루도록 하겠다.

9-1. 고용분 함량 (% OF SOLID)

이 방법은 포리머의 생산수율과 단량체 종합도를 결정하는데 사용되고
있으며, 가공용의 FORMULATION WARK을 위해서 기초적으로 제공되어야한다.
적은 평장접시나 알루미늄접시등에 영업존수지를 5-10CM을 정량으로 평량하여
150°C 오븐에 약 30분간 저열히 하되 130°C의 오븐에 45분정도 저열하여 수분이나
기타 미량물질등이 모두 종합시킨후에 고형물질만이 남겨진다. 이 평량된
수지를 긁어고 하량하여 고형분의 백분율로 계산하여 결정한다.

(건조전의 무게 - 건조후의 무게) / 건조전무게 x 100 = 00%

9-2. PH

유화종합의 제품을 자글적으로 세분화된 PH-TEST PAPER로 포리머에 소량
적지하여 반색된 부분을 표준색상표와 비교하여 즉시로 PH의 한계를 결정하든지
표준 PH-METER 측정기를 사용하여 측정하는데, 포리머에 직접 PH 전극을
넣기전에 PH-7의 표준 BUFFER SOLUTION에 기준을 정한후에 실제 제품에
전극을 직접하여 제품의 PH를 측정한다.
그리하여 제품의 산, 알칼리의 한계를 결정한다.

9-3. 점도 (VISCOSITY)

영업존 수지의 일반적인 점도는 BROOKFIELD VISCOSIMETER을 사용으로
만족하며, 약 100,000 CENTERPOISE가까지 측정할수있다.
이방법은 영업존수지안의 중앙부에 SPINDLE을 적정한의 깊이만큼 주입하여
회전시켜서 얻어진 수치를 기준으로하여 스피드의 사용된 항수를 긁하여 그 제품의
점도를 결정한다.
그리므로 스피드의 결정과 사용에따라 다른 수치를 얻으므로 SPINDLE 결정이

— 215 —
중요하고 약간 경험이 필요로 하게된다.

필히 VISCOSIMETER의 안내서를 참고 하세요.

9-4, 저장 안정성 (SHELF & THERMAL STABILITY)

예절은 POLYMER의 일반적인 외면은 입자의 크기와 고정분이 따라서 다르지만
영은 우유빛색을 나타내게된다. 생산 제품은 500ML 또는 1,000ML 이상의
병에 보관하여 선반이나 창고...등에 오탑동안 보관하여 놓으면 원래의
예절은 POLYMER상태가 변환하여 충분히면상실 및 접전현상등의 상태변화가
발생하게 된다.

저장 안정성의 생명은 저장소의 온도, 습도등에 따라서 POLYMER의 상태변화가
생기므로 주기적으로 따라서 POLYMER의 점도를 측정해 보거나 옥안 판정동으로
결정할수도 있다. ASTM-D-1849를 참조할것.

9-5, 기계적 안정성

예절은 POLYMER는 고반을하거나, 점고을하거나, 분쇄하거나, 분사와 수송 ...등에
따라서 예민한 반응을 나타낼수있다. 그리하여 기계적인 환경변화에 따라서
예절은 POLYMER의 상태변화가 없는것이 중요므로 이를 실험하기 위해서는
"WARING BHENDOR"으로써 5-10분동안 고속 고반을 한달에 100 MESH
스크린으로 여과하여 상태변화를 검사한다. 고정분 발생상태, 점도변화
충분히 현상 ...등을 보게된다. 보통 고속 고반후 80-100°C의 진공 오븐에서
여과하여 관찰하게된다.

9-6, 잔여 모노머(단량체)

정상적인 생산과정에 따라서 예절은 POLYMER를 생산하게 되는데 예절은
POLYMER의 중합도의 수율에 따라서 매우낮은 미반응 단량체가 남겨진다.
이것을 제거하기 위해서는 여러가지 방법이 있으나 생산과정에서는 전역
MONOMER를 증발시키는방법, 약품처리법, 진공처리방법 ...등이 있다.
그러나 분석기기에 의해서 정확한 분석을하여 최적의 함량이 되도록
노력하여야한다.
9-7, 냉동 안정성

대부분의 시판되고있는 에밀존은 겨울철에 영하의 온도에서는 동결하여서 응고되거나 에밀존 상태가 파괴되어서 본체의 상태를 상실하게된다. 이와 같은 문제를 개선하기 위해서 에밀존을 합성시부터 냉동안정성의 개선 방안을 고려하게된다. 보통 K.S 및 A.S.T.M에 나와있으나 -15°C (=5°F)에서 16시간 냉동시키고 심어여 깨내며 8시간 정도 방치하여 녹인다음 잘고반하여 원상태의 에밀존인가를 확인한다. 그립하여 이상이 없을시는 5회의 반복시험을하고 최후에는 점도를 측정하여 원래의 상태와 비교시험한다.

9-8, 열 안정성

에밀존 POLYMER를 생산하여 소비자에 수송되거나 저장시에 적고 환경에 따라서 더욱 온도에 압력을 저장해야할 경우가있을때 에밀존의 상태변화를 막기위해서 열 안정성시험을 하게된다. 보통 60°C에서 5일간 정지 상태에서 시행한뒤 심어여 깨내여 고반후에 점도를 측정하여 판정한다.

9-9, 양면성 (COMPATIBILITY)

에밀존 POLYMER는 타향하게 생산품의 조성이 다르게 배합되거나 한다. 즉 각종 단량체조성, 격면활성제, 안료무기물, POST ADDITIVES, ...등 여러가지 물질들과 혼합되어있는 상태에서 페인트, 프린트링크, 접착제등 타가공 악품들과의 상호간에 잘 섞여질수있는 양면성을 갖이고 있어야한다. 에밀존 자체의 물성은 보존하면서 혼용하여 사용되고있는 악품들과의 적용성이 우수하여야한다. 사용자의 가공 및 응용시에 이상이 없도록 에밀존 POLYMER가 양면성을 지니야한다.

10-10,일도 및 입도분포 (P.S. & PARTICLE SIZE DISTRIBUTION)

실험실에서 매우 주의 깊게 합성하여야 에밀존 POLYMER를 만들때에는 매우 좁은폭의 입도상태를 얻는데 가능하다.
TYPE OF EMULSION POLYMER PARTICLES

1. SINGLE PARTICLES

2. BIMODEL PARTICLES

3. TRIMODEL PARTICLES

4. UNIFORMAL PARTICLES

5. NONSPHERICAL PARTICLES

6. EGGNOL PARTICLES

7. CORE SHELL PARTICLES

8. OPACQUE PARTICLES

9. STUR PARTICLES
예열존 POLYMER를 합성시에 목적한 "입도-크기"를 만드는데의 기술적인 면은 중요하지 않다. 어려움의 시험을 거치고 "입도크기"를 측정하여 채시험을 해야한다. 보통 입도크기는 0.01에서 0.8이 정도일 수 있는데, 입도크기에 따라서 접도가 다르고 각종성능... 등의 어려가져 물성이 달라진다. 그러하여 입도의 본보는 매우 중요하고, 입도의 조정기술이나 입도 본보는 조정기술은 오랜 합성기술로 인해 연마하여야 한다.

PARTICLE SIZE의 측정은 광학현미경 2,300배 이상이나 전자현미경으로 측정 할수있다. PARTICLE SIZE의 조절에 대한 기술적인 문제는 여기에서는 생략한다.

9-11, 최저 도약 형성도

예열존 POLYMER를 도막형태로 입고자할 때 설치 면도에서 도막이 형성되는가를 측정하는 최저온도 도막 형태를 측정하여 용용 연구에 적용하고있다.

이는 M.F.F.T TEST기에 이용해야한다.

9-12, 유무 전환 온도 (GLASS TRANSITION TEMPERATURE)

비결정성 포리머 (AMORPHOUS POLYMER)를 용액상태로 존재하는데 단량체 조합구조에 따라서 예열존 POLYMER를 건조하여야지 않아 또는 도막상태를 얻어진다.

이렇게 얻어진 피막 또는 도막을 TORSIONAL MODULUS 기계의 T300으로 측정하여 실험의 TG300-00°C를 얻어진다.

이때 도막의 두께, 경도, 유연성등의 성질에 따라서 TG의 측정치가 다르다.

한편 TG의 이론적측정은 각단량체의 TG값에 따라서 합성시 조합 단량체 (POLYMER)의 TG를 계산한다. 그러나 이론 TG와 실제 측정치와는 일치하지 않으므로 근사치의 값을 얻는것으로 생각하면된다.
이론 TG의 계산은 KELVIN-DEGREES에 의거하여 산출한다.

예: COPOLYMER TG, 간단량적 TG1, TG2 ...
\[
\frac{1}{TG} = \frac{W1}{TG1} + \frac{W2}{TG2} + \ldots + \frac{WN}{TGN}
\]
식에의해

COPOLYMER조성이 ETHYL ACRYLATE 40% •••• TG = -22°C

METHYL METHACRYLATE 60% •••• TG = +105°C

그래므로 \[
\frac{1}{TG} = \frac{0.4}{273-22} + \frac{0.6}{273+105}
\]
\[
\therefore TG = 1 \div 0.00318 = 315°K = 315°K - 273 = 42°C
\]

여 조성의 POLYMER의 TG = 42°C이다.

이상 말씀한 액체종합체의 품질관계 항목의 어떠한 경우도 역시가지 항목들이 많이 있으나 특별한 경우에만 조사대상이 되므로 여기에서는 지면관계 상황에이에

한다.
WATER BASE POLYMER CHARACTERIZATION

1. MONOMER COMPOSITION
2. TG (GLASS TRANSITION TEMPERATURE)
3. PH-RANGE
4. VISCOSITY (CPS)
5. PARTICLE SIZE
6. FILM FORMING TEMPERATURE
7. STABILITY
 A. CHEMICAL
 B. FREEZE-THAW STABILITY
 C. MECHANICAL
 D. SHELF STABILITY
 E. THERMAL STABILITY (HEAT)
8. VOLUME CONCENTRATION
9. COMPATIBILITY
10. SOLID CONTENTS (%TS)
11. THERMAL STABILITY (HEAT)
12. SHELF STABILITY
13. FADE RESISTANCE
14. CHALK RESISTANCE
15. DURABILITY
16. DIRT PICK-UP
17. SELF-HUMIDITY RESISTANCE
18. PENCIL SCRATCH
19. RUBBING TEST
20. TENSILE STRENGTH
21. FLOW AND LEVELING
22. GLOSS
<table>
<thead>
<tr>
<th>Monomer</th>
<th>k_sp</th>
<th>$T_g \text{ °C}$</th>
<th>Q</th>
<th>e</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44.1°C</td>
<td>60°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Methyl Acrylate</td>
<td>250(1)</td>
<td>1480(2)</td>
<td>0.43</td>
<td>0.73</td>
<td>8</td>
</tr>
<tr>
<td>*Ethyl Acrylate</td>
<td>313(3)</td>
<td>1730(4)</td>
<td>0.34</td>
<td>0.58</td>
<td>-22</td>
</tr>
<tr>
<td>Isopropyl Acrylate</td>
<td>347(5)</td>
<td></td>
<td>0.48</td>
<td>0.45</td>
<td>-5</td>
</tr>
<tr>
<td>*n-Butyl Acrylate</td>
<td>324(6)</td>
<td></td>
<td>0.43</td>
<td>0.53</td>
<td>-54</td>
</tr>
<tr>
<td>Isobutyl Acrylate</td>
<td>228(1)</td>
<td></td>
<td></td>
<td></td>
<td>-43</td>
</tr>
<tr>
<td>s-Butyl Acrylate</td>
<td>392(3)</td>
<td></td>
<td>0.41</td>
<td>0.34</td>
<td>-20</td>
</tr>
<tr>
<td>t-Butyl Acrylate</td>
<td>310(1)</td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>2-Ethylhexyl Acrylate</td>
<td>450(7)</td>
<td></td>
<td>0.65</td>
<td>0.90</td>
<td>15</td>
</tr>
<tr>
<td>Cyclohexyl Acrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3,5-Trimethylcyclohexyl Acrylate</td>
<td>575(3)</td>
<td></td>
<td>0.46</td>
<td>0.58</td>
<td>-49</td>
</tr>
<tr>
<td>2-Methoxyethyl Acrylate</td>
<td></td>
<td></td>
<td>0.46</td>
<td>0.49</td>
<td>-50</td>
</tr>
<tr>
<td>2-Ethoxyethyl Acrylate</td>
<td></td>
<td></td>
<td>0.42</td>
<td>0.63</td>
<td>-72</td>
</tr>
<tr>
<td>2-Butoxyethyl Acrylate</td>
<td></td>
<td></td>
<td>1.14</td>
<td>0.90</td>
<td>106</td>
</tr>
<tr>
<td>†Acrylic Acid</td>
<td></td>
<td></td>
<td>0.51</td>
<td>1.14</td>
<td>100</td>
</tr>
<tr>
<td>†Acrylonitrile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Thiolacrylate</td>
<td>27</td>
<td>123</td>
<td>0.74</td>
<td>0.40</td>
<td>105</td>
</tr>
<tr>
<td>Propyl Lactylacrylate</td>
<td></td>
<td></td>
<td>1.30</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>*Methyl Methacrylate</td>
<td>25(8)</td>
<td>128(4)</td>
<td>0.70</td>
<td>0.44</td>
<td>65</td>
</tr>
<tr>
<td>*Ethyl Methacrylate</td>
<td>43</td>
<td></td>
<td>0.74</td>
<td>0.45</td>
<td>81</td>
</tr>
<tr>
<td>Isopropyl Methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*n-Butyl Methacrylate</td>
<td>41</td>
<td>158</td>
<td>0.74</td>
<td>0.39</td>
<td>20</td>
</tr>
<tr>
<td>*Isobutyl Methacrylate</td>
<td>35</td>
<td>396</td>
<td>0.68</td>
<td>0.43</td>
<td>48</td>
</tr>
<tr>
<td>s-Butyl Methacrylate</td>
<td>35</td>
<td>396</td>
<td>0.72</td>
<td>0.24</td>
<td>60</td>
</tr>
<tr>
<td>t-Butyl Methacrylate</td>
<td>42</td>
<td></td>
<td>0.71</td>
<td>0.32</td>
<td>107</td>
</tr>
<tr>
<td>n-Hexyl Methacrylate</td>
<td>42</td>
<td></td>
<td>0.66</td>
<td>0.35</td>
<td>-5</td>
</tr>
<tr>
<td>n-Octyl Methacrylate</td>
<td>106(3)</td>
<td></td>
<td>0.67</td>
<td>0.20</td>
<td>-20</td>
</tr>
<tr>
<td>*Isodecyl Methacrylate</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td>-41</td>
</tr>
<tr>
<td>*Lauryl Methacrylate</td>
<td>95(9)</td>
<td></td>
<td>0.74</td>
<td>0.20</td>
<td>-65</td>
</tr>
<tr>
<td>Tridecyl Methacrylate</td>
<td>118(9)</td>
<td></td>
<td></td>
<td></td>
<td>-46</td>
</tr>
<tr>
<td>*Stearyl Methacrylate</td>
<td>130(9)</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>Phenyln Methacrylate</td>
<td>210</td>
<td></td>
<td>1.24</td>
<td>0.62</td>
<td>112</td>
</tr>
<tr>
<td>Cyclohexyl Methacrylate</td>
<td>47(7)</td>
<td></td>
<td>0.73</td>
<td>0.41</td>
<td>104</td>
</tr>
<tr>
<td>3,3,5-Trimethylcyclohexyl Methacrylate</td>
<td>50(1)</td>
<td>550</td>
<td>0.50</td>
<td>0.50</td>
<td>170</td>
</tr>
<tr>
<td>Monomer</td>
<td>k_{sp}</td>
<td>Q</td>
<td>e</td>
<td>T_e °C of Homopolymer</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Bromoethyl Methacrylate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*2-Hydroxyethyl Methacrylate</td>
<td>0.95</td>
<td>0.57</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Hydroxypropyl Methacrylate</td>
<td>0.93</td>
<td>0.40</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycidyl Methacrylate</td>
<td>0.79</td>
<td>0.20</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Dimethylaminoethyl Methacrylate</td>
<td>0.91</td>
<td>0.38</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*t-Butylaminoethyl Methacrylate</td>
<td>66</td>
<td>0.70</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methoxyethyl Methacrylate</td>
<td>0.98</td>
<td>0.17</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethoxyethyl Methacrylate</td>
<td>0.88</td>
<td>0.42</td>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylthioethyl Methacrylate</td>
<td>3.74</td>
<td>0.18</td>
<td>-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethyl Methylenegluturate</td>
<td>4.25</td>
<td>1.69</td>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isocyanatoethyl Methacrylate</td>
<td>0.54</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†*Methacrylic Acid</td>
<td>70.6(10)</td>
<td></td>
<td></td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>†Methacrylonitrile</td>
<td>0.94</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-(Diethylphosphato)ethyl Methacrylate</td>
<td>0.97</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Diethylphosphonoethyl Methacrylate</td>
<td>1.41</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Styrene</td>
<td>6</td>
<td>29</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Ethylene</td>
<td>0.015</td>
<td>-0.20</td>
<td>-125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butadiene</td>
<td>2.39</td>
<td>-1.05</td>
<td>-78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>0.026</td>
<td>-0.22</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>0.44</td>
<td>0.20</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Vinylidene Chloride</td>
<td>0.16</td>
<td>0.51</td>
<td>-19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Vinylpyrrolidinone</td>
<td>2.94</td>
<td>-1.21</td>
<td>86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) 3M, methyl propionate (6) 1.5M, toluene
(2) 2.5M, methyl propionate (7) 4M, methyl propionate
(3) 3M, benzene (8) 4M, benzene
(4) 2.5M, benzene (9) 2M, methyl isobutyrate
(5) 6M, methyl propionate (10) 2.8M, methanol

These values were determined by the Research Division of Rohm and Haas Company except for certain values of Q and e, which were calculated from carefully examined published values of the monomer reactivities with styrene. All listed values of Q and e are based on copolymerization with styrene. Certain monomers, marked with †, have different values of Q and e with other comonomers; additional data are available on request.

Initial rates of polymerization were determined in bulk or in solution using AIBN as initiator. The footnotes indicate the solvent and concentration of monomer used for the measurements made in solution. The units of k_{sp} are expressed in liters$^{-1/2}$/mole$^{-1/2}$/hr. To calculate the initial rate of polymerization, insert the above value of k_{sp} and the concentration of AIBN into the following equation:

$$\text{initial rate of polymerization (in %/hr)} = k_{sp} \sqrt{\text{[AIBN]}}$$

The monomers marked with an asterisk (*) are supplied in commercial quantities by Rohm and Haas Company.
10. 여멸혼 수지의 도료 응용

PAINT APPLICATION OF EMULSION POLYMER

10-1. 도료의 정의

일반적으로 도료란 어떤 물체의 표면을 덮아둘 것으로 도포하여 건조된 지막층을 형성시킴으로써 물체에 소기의 성능을 부여하는 유동 및 분말상태의 화학제품을 의미한다.

도료 그 자체는 화학 제품이지만 그의 가치는 물체위하여 도장되어 도막이 형성 하여야만이 도료가치를 발휘한다.

도막은 필의 물체를 보호해으며 외관이나 형상의 변화가 있어 미관을 도모하며 외부의 물리적 화학적 변화에도 어느정도 지속적인 유지가 필요로 하기 때문이다.

여기에 도장기술의 발전에 따라서 도료의 수요증폭 조건이 달라지고 있다.
도료에 사용되고 있는 약품은 수수히 많으며 변천의 역사도 수세기 동안 발전하여 왔다. 여기에서는 여멸혼 POLYMER로써 도료에 응용과 분류에서 응용가치, 개발분야등을 알리고자 한다.

10-2. CLASSIFICATION OF WATER BASE PAINT

EXTERIOR PAINTS FOR TRADE SALES

EXTERIOR WHITE PAINTS

- Exterior Paint (TT-P-19B) (Acrylic)
- Exterior House Paint (Acrylic)
- Exterior House Paint for High Humidity Conditions (Acrylic)
- Exterior One Coat Paint (Acrylic)
- Exterior White House Paint (Acrylic)
- Exterior White Paint (Acrylic)
- Exterior One Coat Paint (Acrylic/Alkyd)
- Exterior White House Paint (Acrylic/Alkyd)
- Exterior White Paint (Acrylic/Ester Adduct)
- Exterior House Paint (Linseed Oil)
- Exterior Low-Cost House Paint (Linseed Oil/Chlorinated Hydrocarbons)
- Exterior House Paint (Polyvinyl Acetate)
- Exterior Paint (Polyvinyl Acetate)
- Exterior White House Paint (Polyvinyl Acetate)
- Exterior White Paint (Polyvinyl Acetate)