1. Theory for Heat Capacity of Ideal Gas

I) KDB correlation equation (HC_CPGEQN)

Polynomial equation is used for Heat capacity of ideal gas.

\[C^0_p(T) = \sum_{i=0}^{4} A_i T^i \] \hspace{1cm} (1)

where, \(T \) is Kelvin and \(C^0_p(T) \) is kJ/kg-mol.K.

2. KDB Routines for Calculation of Ideal Gas Heat Capacity

KDB Ideal gas heat capacity calculation subroutine contain a KDB correlation equation.

<table>
<thead>
<tr>
<th>Subroutine Name</th>
<th>Description</th>
<th>Required Common Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC_CPGEQN</td>
<td>KDB correlation equation</td>
<td>HC_KCPG</td>
</tr>
</tbody>
</table>

I) HC_CPGEQN

1. Usage : CALL HC_CPGEQN(ICN,T,HVP,IST)

2. Arguments

 ICN : Component ID number (1-50) to calculate heat of vaporization (integer, input)
 T : Temperature in Kelvin (real*8, input)
 CPG : Heat capacity of ideal gas in kJ/kg-mol.K (real*8, output)
 IST : Status of calculation (integer, output)
 = 0 : Normal termination
 = 301 : Heat of ideal gas heat capacity coefficient not available