나노기술 뉴스

"나노기술이 대두된 것은 지금으로부터 불과 15년 전 안팎이다. 80년대 초반 원자를 직접 놓으므로 보고 조작할 수 있는 주사형감행미경(STM), 편차형미경(AFM) 등이 발명되면서 나노기술에 대한 연구는 꽤 이른 현실로 진입하였다. 하지만 지금에 도 이 많은 기술자들의 업적고하는 산업적 측면에서의 연구는 90년대 들어서면서 본격화되었다. 세계적인 주요 나노 프로젝트가 수차례 나노기술 개발에 1차적인 목표를 두고 있는 것이다. 이 외, 일본, 네덜란드 등이 이 분야에서 활발하게 모습을 보이고 있다. 아직 기초적 수준이지만 IBM과 같은 기업들은 이미 나노 기술에 대한 소프트웨어 연구활동을 접목하며 연구를 시작했다. 그러나 기업 차원에서의 연구는 거의 전무한 상황이다.

내셔널 챌린지 연구단인 PSIA(대표 박상일)가 원자의 반응과 성질을 측정할 셀로 개발해, 삼성종합기술원이 기술 개발도 구체화하고 있다. 한편 국내 나노기술 분야 학문자들의 수준이 외국과 비교해 겉보기 뒤떨어지지 않는다는 것을 보여주는 사례가 이어졌다. 나노기술을 연구할 학생들에게는 탄소나노튜브에 대한 독보적 연구결과는 그 가운데 하나다. 국내 기술진들의 성과는 나노기술 분야의 이산화재해결대회인 "STM국제학회"가 올해 경쟁적인 분위기를 제작하고 국내에서 개최되느냐는 점에서도 옳을 수 있다.

90년대 들어 나노기술은 세계 선행국에서 혁신 선도 기술로서 각광을 받으면서 실제적인 연구와 응용이 활발히 이루어지고 있는. 기술 주도권을 잃기위한 미국, 일본, 유럽 등의 경쟁도 갈수록 치열해지고 있다. 미국의 경우 IBM의 월베이드연구소 아일리악 박사팀은 지난 90년 초중기에 27개의 크기는 원자를 일정한 열로 움직이 IBM 굴자를 구성, 원자를 이용해서 정보를 기록할 수 있음을 입증했다. 또 STM의 탐정으로 철(Fe)원자를 구리결정 표면에서 하나씩 하나씩 움직여 한자리의 "原子의 이미지를 구성해 냈다. 최근에는 일반화탄소(CO)분자를 이용한 맥급 결정표면에 사물 형상을 구현하기도 했다. 위스콘신대의 C가름 교수팀은 마크로마터 이턴의 투명파파를 만들었다. 버컨(탄소 60개로 이루어진 측구모형태의 물질) 발견으로 96년 노벨화학상을 수상한 라이스 대의 스피고 교수팀은 최근 두개의 특감분자를 날카롭게 작은 바닥에 뒤덮어 이를 대형 생성하는 방법을 개발했다. 노스웨스턴 대 이란 교수팀은 최근 15nm 공기의 원자단 개발에 성공했으며 코브래 연구팀은 실리콘 결정체 위에 나노사이어 규모의 기판과 헤프를 만들어냈다. 일본은 범국가 차원에서 나노기술 연구에 적극 나서고 있다. 이를 위해 학계, 연구소, 기업체를 유럽 "JRCAT"를 만들어 양성난 투자를 하고 있다. 일본은 이미 90년대 초부터 나노기술에 대한 기초 연구를 진행해 왔다. 지난 91년 이마이 박사가 버커를 만들고는 과학에서 나노기술 구현을 실현에 성공한 탄소나노튜브를 처음 발견했다. 또 93년 NEC의 오시야마 박사팀은 탄소나노튜브를 제작해 활성화할 수 있음을 이론적으로 분석했다. 이와 함께 98년 탈소사는 크고 부드러운 실물의 1000분의 1밖에 안되는 최소규모로 작동하는 나노기술 기반의 미크로 로커를 제작, 화재를 모의해 냈다. 유럽에서는 네덜란드 알프스밀고대가 세계적인 나노기술 연구 프로젝트를 진행하고 있다. 독일에서도 나노기술을 응용해 초당 57개에 당겨 놓을 수 있는 밀밀하게 작동하는 나노기술 기반의 미크로 로커를 제조한다 등 나노기술 연구에 적극 나서고 있다. 이러한 이외 중국은 지난해 8월 중국과학원 주관으로 "중국과학협회 나노과학 국제 세미나"를 개최하는 등 나노기술 연구에 앞장 물리하고 있다. 러시아도 분야 조합사에 사용되는 나노 로봇의 부품 개발과 나노기술에서 세계적인 수준을 유지하고 있다."