FPD 세정 공정

2006년 5월 3일
배재흠
수원대학교 화공생명공학과
디스플레이 분류

Electronic Display

CRT
FPD
Projection

비발광
자발광

LCD

PDP
유기EL
FED

AM
PM

TFT
TN
STN
PDLC

CRT: Cathode Ray Tube
FPD: Flat Panel Display
LCD: Liquid Crystal Display
PDP: Plasma Display Panel
유기EL: Organic Electro Luminescence
FED: Field Emission Display
TFT: Thin Film Transistor
A(P)M: Active (Passive) Matrix
(S)TN: (Super) Twisted Nematic
PDLC: Polymer Dispersed Liquid Crystal
FPD Process Overview

Glass | GATE Electrode | Insulator & a-si | DATA Electrode | Passivation | Pixel Electrode

Deposition & Patterning Process in Detail

Cleaning | Deposition | Cleaning | PR Coating | Exposure | Develop | Etching | PR Strip | Inspection

Clean process & product lab
FPD Cleaning Process

Process Sequence

Loading - UV or O₃ - BRUSH Scrub (W/Detergent) - DI SHOWER - BUBBLE JET - F/RINSE - UDG (Ultra dry Gate) - Unloading

- Organic Removal
- Large Particle
- Small Particle
- Small Particle
- Preventing Particle Re-adhesion
- Dry

Option

- Organic Removal: O₃ Water (Better Wet ability), UV
- BUBBLE JET, CAVITATION JET, HIGH PRESSURE JET, MEGA SONIC SHOWER, PULSE JET
- Heated Air, Hot DIW Dry, Air Knife Dry, Marangoni Dry, Spin Dry, IPA Dry, Vacuum Dry, UDG

Clean process & product lab
FPD Cleaning Technology Trend*

<table>
<thead>
<tr>
<th>Cleaning Method</th>
<th>Trend</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Cleaning</td>
<td></td>
<td>One Chamber / Multi Cleaning</td>
</tr>
<tr>
<td></td>
<td>'94~96</td>
<td>'97~99</td>
</tr>
<tr>
<td>Chemical Cleaning</td>
<td></td>
<td>Function Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Cleaning</td>
<td></td>
<td>UV Cleaner : Excimer, DUV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LASER, Plasma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry system</td>
<td></td>
<td>Hot Air</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spin Dry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air knife</td>
</tr>
</tbody>
</table>

- Floor-Space-effective
- Environment-friendly
- Performance Enhancement
- Yield-up
- Scalability
- Running-cost-effective
- Investment-cost-effective
Example of Semiconductor Cleaning Process

1. H₂SO₄/H₂O₂ (SPM) 4:1 유기물 120~150 °C
 - 초순수 Rinse
 - DHF 0.5%
 - 초순수 Rinse
 - NH₄OH/H₂O₂/H₂O (APM) 0.05:1:5 입자 80~90 °C
 - 초순수 Rinse

2. 온초순수 Rinse 80~90 °C
 - 초순수 Rinse
 - HCl/H₂O₂/H₂O (HPM) 1:1:6 금속 80~90 °C
 - 초순수 Rinse
 - DHF 0.5%
 - 초순수 Rinse

- 초순수 Rinse
- 초순수 Rinse
- 초순수 Rinse
- 초순수 Rinse
- 초순수 Rinse

Conventional Wet Cleaning Process

<table>
<thead>
<tr>
<th>Section</th>
<th>Cleaning Methods</th>
<th>Cleaning 목적 및 Mechanism</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>화학 전</td>
<td>APM, SC-1 (NH₄OH/H₂O₂/H₂O) 75~90 ºC</td>
<td>➢ Light Organics, I/II 계 Metals, Particle 제거 ➢ 2H₂O₂ + C --> CO₂ +2H₂O ➢ M + H₂O₂ --> MO +H₂O, MO+4NH₄OH -->M(NH₄)⁴⁺</td>
<td>Metal Re-Adsorption (Alkali 계 Metal) due to low Redox potential Si- wafer micro-roughness</td>
</tr>
<tr>
<td>화학 전</td>
<td>HPM, SC-2 (HCl/H₂O₂/H₂O) 75~85 ºC</td>
<td>➢ Metal(알칼리 이온, 중금속) 제거 ➢ Ion Exchange : Na⁺ +HCl --> NaCl + H⁺ ➢ Complex : M + H₂O₂ --> MO + H₂O MO +2HCl -->MCl₂+H₂O</td>
<td>Formation of thin hydrophilic chemical oxide film Difficult in maintenance of hardware due to high corrosiveness</td>
</tr>
<tr>
<td>제 정</td>
<td>SPM (H₂SO₄/H₂O₂/H₂O) 90~130 ºC</td>
<td>➢ Heavy Organic, Metal 제거 ➢ H₂SO₄ +H₂O₂ --> H₂SO₅(CARO'S ACID) + H₂O ➢ H₂SO₅ + Hydrocarbon --> CO₂ + H₂O +H₂SO₄</td>
<td>Formation of thin hydrophilic chemical oxide film Generation of SO₄²⁻- Residue on the substrate</td>
</tr>
<tr>
<td>제 정</td>
<td>Dilute HF (HF/H₂O)</td>
<td>➢ Natural Oxide Film, Metal 제거 ➢ 6HF +SiO₂ --> H₂SiF₆ + 2H₂O ➢ 3HF + M --> MF₃ +3H⁺</td>
<td>Removal of surface oxide and metal in the metal oxide film by dilute HF solution Removal of noble metal by H₂O₂</td>
</tr>
<tr>
<td>제 정</td>
<td>BOE (HF/NH₄Cl/H₂O/계면활성제)</td>
<td>➢ Oxide Film 제거</td>
<td>Buffered oxide etchant HF/NH₄F=1:7</td>
</tr>
</tbody>
</table>
FPD와 Semiconductor의 세정 비교*

<table>
<thead>
<tr>
<th>Classification</th>
<th>Semiconductor Process</th>
<th>Flat Panel Display Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 세정의 대상</td>
<td>Wafer. ~ 300 mm dia.</td>
<td>300*400mm(1st G)</td>
</tr>
<tr>
<td>2. 세정제</td>
<td>SC1, SC 2, SPM.. RCA cleaning.. Acid & Base Mixture</td>
<td>Glass, ~ 1870*2200 mm (7th G)</td>
</tr>
<tr>
<td>3. 세정 목적</td>
<td>Organics, Metal, Particle, Oxide</td>
<td>Organics, Particle, Water Marks, Metal, Oxide</td>
</tr>
<tr>
<td>4. 반송 단위</td>
<td>약 25 매/lot, Carrier</td>
<td>1 매, 연속 반송</td>
</tr>
<tr>
<td>5. 세정 방식</td>
<td>Dip, Bath</td>
<td>Shower, Spray</td>
</tr>
<tr>
<td>6. 세정 시간</td>
<td>about 10 min/each bath</td>
<td>Below 1 min / 1 매, chamber</td>
</tr>
<tr>
<td>7. 기타</td>
<td></td>
<td>연속반송 1000 ~ 8000 mm/min</td>
</tr>
</tbody>
</table>

* 권정현, 삼성SDI ** tetra methyl ammonium hydroxide

Clean process & product lab
1. PRINCIPLE
 Remove an electron from organic molecules to oxidize and decompose them to CO$_2$, H$_2$O, and etc.

2. HOW TO REMOVE AN ELECTRON?
 To remove an electron by high ORP solutions such as H$_2$SO$_4$, HCl, HNO$_3$, etc. have been used.

3. WHY OZONIZED WATER?
 ORP of ozonized water (DIW with a few ppm of ozone) is higher than those of H$_2$SO$_4$, HCl, HNO$_3$.

4. O$_3$ and OH$^-$ (hydroxyl ion) in water generates OH* (hydroxyl radical) which promotes oxidation of organics.

5. Initiators such as high pH or UV radiation may be necessary for OH* reaction.
Mechanism of Particle Removal

1. 1ST Step...lift off
 - *Mechanical lift off*
 - Ultra sonic (MHz)
 - Brush scrub
 - *Chemical lift off*
 - Substrate etching with alkaline and HF
 - Use of H\textsubscript{2} Water: H radical generation
 ⇒ inactivation of soil or detachment of soil
 - Particles are dissolved with HF or decomposed with O\textsubscript{3}

1. 2ND Step...Prevention of re-adhesion
 - Change of surface potential charge of particle and substrate
 - Alkaline pH
 - Negative potential may help the enhancement of negative charge.
 ⇒ Same polarity of Zeta potential between particle and substrate
Mechanism of Metal Removal

1. Metals in SiO$_2$ film
 - MOx
 - SiO$_2$
 - M$	extsuperscript{+}$
 - SiO$_2$
 - Substrate
 - Substrate
 - *Metals are removed together with SiO$_2$ by etching with HF.*

2. Metals on bare Si
 - MOx
 - SiO$_2$
 - M$	extsuperscript{+}$
 - SiO$_2$
 - Substrate
 - Substrate
 - *Metals are ionized by acidic and oxidative solutions.*

酸性和氧化性溶液.
- Conventional: Acid & oxidizer at Hot temp & High conc.
- Activated UPW: Diluted acidic oxidative solutions (HF/O$_3$ or HCl/ O$_3$ solution)
 - ORP of Ozonized water is higher than those of H$_2$SO$_4$, HCl, HNO$_3$, etc.
Cleaning Principles

Contaminants to be removed

- **Organic Contaminants**
 - To be oxidized and decomposed into solution
 - Increase ORP of the solution than organics
 - Ozonized Water (O$_3$ Water)

- **Particle Contaminants**
 - Separate particles from surface
 - Equalize Zeta potential of particle and substrate
 - Alkallic, Hydrogen Water (NH$_4^+$ – H$_2$ Water)

- **Metallic Contaminants**
 - Metals to be ionized and decomposed into solution
 - Increase ORP of the solution than metal
 - Acidic Ozonized Water (HCl–O$_3$ Water)

Necessary Conditions

Methods to be done

Cleaning solutions

Functional Water

- **Ultra pure Water (DIW)**
 - Indirect DIW Electrolysis (Separation of Gas / liquid)
 - Direct DIW Electrolysis

O₃ Water Generator
- O₃ Water

H₂ Water Generator
- H₂ Water

Ion Water Generator
- Anode Water + HCl
- Cathode Water + NH₄OH

Table:

<table>
<thead>
<tr>
<th>pH</th>
<th>ORP (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>+1,350</td>
</tr>
<tr>
<td>7</td>
<td>-350</td>
</tr>
<tr>
<td>5~7</td>
<td>+400</td>
</tr>
<tr>
<td>1~5</td>
<td>+1,100</td>
</tr>
<tr>
<td>6~8</td>
<td>-350</td>
</tr>
<tr>
<td>9~13</td>
<td>-750</td>
</tr>
</tbody>
</table>
Electrolyzed water (EW)

☐ The controlled water in terms of pH and oxidation-reduction potential (ORP) by the electrolysis

☐ Easy to control pH/ORP in wide range with only current/voltage changes

☐ Oxidation-reduction potential (ORP, E)

\[O_x + ne = R_{ed} \] \hspace{1cm} (1)
\[E = E_0 - \frac{RT}{nF} \log \left(\frac{C_{\text{red}}}{C_{\text{ox}}} \right) \] \hspace{1cm} (2)

at \(C_{\text{red}} > C_{\text{ox}} \), ORP is negative value (reductive water)

at \(C_{\text{red}} < C_{\text{ox}} \), ORP is positive value (oxidative water)
Principle of EW Generation

- CW → H⁺
- OH⁻ → H₂
- H⁺ ↔ H⁺
- OH⁻ ↔ OH⁻
- H₂O
- AW

- CW → H⁺
- OH⁻ → H₂
- H⁺ ↔ H⁺
- OH⁻ ↔ OH⁻
- H₂O
- AW

- CW → H⁺
- OH⁻ → H₂
- H⁺ ↔ H⁺
- OH⁻ ↔ OH⁻
- H₂O
- AW

- CW → H⁺
- OH⁻ → H₂
- H⁺ ↔ H⁺
- OH⁻ ↔ OH⁻
- H₂O
- AW
Procedure for Generating Electrolyzed Water

Supply electrolyte

Supply electrolysis power

Anode water, Cathode water

Measurement of EW properties

Surface cleaning

Such as UPW, NH₄OH, HCl, and NH₄Cl

7.0~9.0 A, 10~12 V

Anode and cathode water generation

ORP, pH and lifetime, FT-IR

Particle counter, TRXFA, AFM
EW Properties

A: Anode water with electrolyte
 ~ Effective for removal of metal ions
 Oxidative water, High H⁺ Conc.
 Similar to properties of O₃ water

B: Anode water by UPW
 ~ Effective for removal of metal ions

C: Cathode water by UPW
 ~ Effective for removal of particles
 Reductive water, High OH⁻ Conc.
 Similar to properties of H₂ water
 Normally used with NH₄OH

D: Cathode water with electrolyte
국내 전해이온수 공급업체

1. 마이크로뱅크 (http://www.micro-bank.co.kr ; 031-905-3420)
 • 산업자원부의 청정생산기술과제 수행(Hynix와 공통수행)
 • 반도체/LCD 세정용 3조식 전해장치 제조기술 개발 및 응용
 (금속오염물, 유기물, SiO₂ 미립자, SO₄²⁻ 이온제거)
 • Redox를 이용한 산업공정에서의 일반세정기술 개발 및 응용
 (하드디스크, PCB, 광학렌즈 등)
 • 전해 산성수에 의한 살균 소독 시스템 개발
 • 응용 이온수기 개발: (㈜)한국세라스톤에 알카리성 이온수기 공급

2. 맥스산업㈜ (02-716-6883~4)
 • 직류전원에 의하여 산성/알칼리성 전해수(pH 2.0~12.0, ORP±1000mV이상)
 • 응용: 반도체, LCD 및 PCB 기판 세정
 • 각종 배관라인의 세정 및 살균

3. ㈜서양에이아이 (http://www.seoyang.co.kr ; 02-488-8444)

Clean process & product lab
일본 전해이온수 공급업체

1. REIKEN, INC. (http://www.reikeninc.co.jp)
 - Dynakleen.D
 • 고주파(30~34 kHz) 전기분해
 : 부식 예방 및 스케일 제거, 화학 물질 미사용
 • 3조 시스템(+, −, earth)
 : 이물질이 전극에 미부착 - 전극 유지용이, 자체 세정 효과
 • 활성수: 살균 및 악취제거, 유지비저렴(ROI = 1~1.5 year)

2. Nissin seiki Co., Ltd. (http://www.nissin-seiki.co.jp)
 - 강알칼리 이온 세정수 생성시스템(NEWSEW-01-RO)
 • 강알칼리 이온수 생성(pH 12~12.5)
 • 순수 세정 장치가 있어 알칼리수와 순수를 별도로 생산가능
 • 전해질로 CaCO₃ 사용
 • 피세정물의 산화 및 부식 방지, 악취 제거 및 살균 효과

3. NITTO KOSHIN CO., Ltd.
 - 전해수 생성 unit
 • 본체에 수돗물을 직접 연결하여 연수와 알칼리성 전해수 생성(전해질 사용)
 • 연수기의 재생은 완전 자동
 • 응용 사례:
 i) 액정 유리의 최종 세정
 ii) AI 가공유 세정에서 탄화수소계 세정제 대체

Clean process & product lab
Applications of Functional Water

<table>
<thead>
<tr>
<th>Classification</th>
<th>FPD</th>
<th>Semicon</th>
<th>Wafer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Removal</td>
<td>2. Pre-Deposition</td>
<td>2. Pre/Post-CMP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Post-Deposition</td>
<td>3. Post-Ashing</td>
<td></td>
</tr>
<tr>
<td>H$_2$ Water</td>
<td>1. Clean bare glass</td>
<td>1. Post-CMP</td>
<td>1. Rinse after Chemical Bath</td>
</tr>
<tr>
<td>Particle Removal</td>
<td>2. Rinse after etching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrolyzed Water</td>
<td>Removal of Metal & Particle</td>
<td>1. Post-CMP</td>
<td>1. Removal of Metal, Particle & Organics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. SO$_4^{2-}$ removal after SPM cleaning</td>
</tr>
</tbody>
</table>
Bubble Jet Technology*

1) Principle

- **Principle**
 - Initial Particle: 1000-3000ea
 - $S \approx 1~3 \mu m$, $M \approx 3~5 \mu m$, $L \approx 5 \mu m$, $T \approx \geq 1 \mu m$

2) Performance

- **Particle Removal Ratio (%)**
 - High Pressure Jet
 - Bubble Jet

<table>
<thead>
<tr>
<th>NO</th>
<th>Item</th>
<th>O₃ Water</th>
<th>Roll Brush</th>
<th>Bubble Jet</th>
<th>Shower(M/S)</th>
<th>Di Shower</th>
<th>Aqua knife</th>
<th>Air knife</th>
<th>Avg. Particle Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W / BJ</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>66EA</td>
</tr>
<tr>
<td>2</td>
<td>W/O BJ</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>170.3EA</td>
</tr>
</tbody>
</table>

Note:
1. Avg. Initial Particle: 2166EA
2. Sample Size(N): 3Pcs, Each
3. Particle Counter: $\geq 1 \mu m$ (Hitachi: GI-4700)
4. Glass Size: 590 * 670

* 박영순, 대화일렉트론

Clean process & product lab
Dry Systems*

- **Heated Air**
 - Heated @ 80 ~ 200°C
 - Water mark
 - Surface Oxidation
 - Cleaning Performance Degradation
 - Higher Running cost

- **Hot DI**
 - Heated @ 80°C
 - Water mark
 - Surface Oxidation
 - Cleaning Performance Degradation
 - Higher Running cost

- **Spin Dry**
 - Room Temp.
 - Mechanical Damage
 - Poor Scalability
 - Lower Running cost

- **IPA Dry**
 - Heated @ 250°C
 - Fire Issue
 - Fire Extinguisher necessary
 - Single Process impossible
 - Higher Running cost

- **Air knife**
 - Room Temp.
 - Water mark
 - Additional De-humidifier necessary
 - Cleaning Performance Degradation
 - Lower Running cost

- **UDG(Ultra Dry Gate)**
 - CDA (Room Temp.)
 - Ultra Dry Air
 - (Water content : < 0.5ppm)
 - Evaporation of surface water trace
 - Lowest Running cost

* 박영순, 태화일렉트론