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State Space Disturbance Model Development

1. Assume somthing reasonable:

� Step disturbance to output:

�yw(k) = e(k)

� Ramp disturbance to output:

�xw(k + 1) = �xw(k) + e(k)

�yw(k) = �xw(k) + e(k)

2. From funndamental ODE's: unmeasured disturbances in ODE's.

�xw(k + 1) = A�xw(k) +Bwe(k)

�yw(k) = C�xw(k)

3. From Historical Plant Deta: Given historical plant deta, the stochastic

state space model of the disturbance can be obtained using various

techniques like spectral factorization and subspace identi�cation.
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Overall State Space Model

Plant with noise and state space disturbance model:

Overall model:
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Overall State Space Model (Continued)

+ denote the above as

X(k + 1) = �X(k) + �u�u(k) + �d�d(k) + �ee(k + 1)

ŷ(k) = �X(k) + �(k)

Given state space disturbance model, disturbance estimation can be done in

a systematic way using well known Kalman �ltering technique.

X(kjk � 1) = �X(k � 1jk � 1) + �u�u(k � 1) + �d�d(k � 1)

X(kjk) = X(kjk � 1) +K(ŷ(k)� ~y(kjk � 1))

� Recursive feedback update

� Various disturbance shape can be handled

� Cross-channel update
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1.4 MPC FORMULATION USING STATE-SPACE

MODEL

Overview

12



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Chapter 2

NONLINEAR AND ADAPTIVE

MODEL PREDICTIVE CONTROL

2.1 MOTIVATION

Why Nonlinear and Adaptive MPC?

� Continuous processes with wide operating ranges

13



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

� Continuous processes with very strong nonlinearity (e.g.,

exothermic CSTR operated close to the optimum yield).

� Batch processes or other transition processes

These applications motivate development of

Nonlinear MPC or Adaptive MPC.
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2.2 ISSUES IN NONLINEAR MPC

Issues

� Nonlinear Models: If �rst principle nonlinear ODE model

is not available, do we have appropriate nonlinear system

identi�cation tools?

� State Estimation: At t = k,

x(k � 1jk � 1); u(k � 1); d(k � 1); y(k � 1) =) x(kjk)

The open-loop model prediction can be done through nonlinear

model integration. However, the measurement correction is

much more di�cult. For instance, is linear gain correction

x(kjk) = x(kjk � 1) +K(ŷ(k)� y(kjk � 1))

su�cient? Also, how should we choose the gain matrix K?

� Control Computation:

The prediction equation is no longer linear in the future input

moves, i.e.,

Y(k + 1jk) = ~F(x(kjk); d(k);�U(k))

Since we have nonlinear prediction constraints, the

optimization is no longer QP and can be computationally

expensive and unreliable (e.g., local minima).
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Nonlinear Models

� First principle nonlinear ODE models

dx
dt

= f(x; u; d; w)

ŷ = g(x)

We will focus on this type of model in this lecture.

� Nonlinear di�erence equation model for nonlinear system

identi�cation

x(k + 1) = f(x(k); u(k); d(k))

ŷ(k) = g(x(k))

{ Arti�cial neural networks

{ Nonlinear series expansion models such as Volterra model

and and NARX model.

{ Rectilinear models where g and/or g are piece-wise linear.

{ Linear model plus static nonlinearity

� Hammerstein Model: input nonlinearity

� Wiener Model: output nonlinearity

Generally, one shoud be very careful using a nonlinear model �tted

to open loop data as the model can behave very di�erently when

the loop is closed.
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2.3 LINEARIZATION BASED NONLINEAR MPC

Standard Model

The standard model that we will use is of the following form:

dx
dt

= f(x; u; d; w)

ŷ = g(x) + �

We express the unmeasured disturbance w using the following

stochastic equation driven by zero-mean white noise sequence e(k):

xe(k + 1) = Aex
e(k) +Bee(k)

w(k) = Cex
e(k)

EXAMPLE: If Ae = 1; Be = 1; Ce = 1, we have

w(k) = w(k � 1) + e(k) =) �w(k) = e(k)

This means w(k) is a random step.

We will assume the above random step model for w(k)

for simplicity.
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Standard Model (Continued) Combining the two equations

give

X(k + 1) �=

2
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where Fts(x(k); u(k); d(k); w(k)) stands for the state vector

resulting from integrating the ODE for one sample interval (from

t = k to t = k + 1) with initial condition x(k) and constant inputs

of u(t) = u(k) and d(t) = d(k) and w(t) = w(k).

We can also write the measurement equation as

ŷ(k) = g(x(k)) + �(k)

18



c1997 by Jay H. Lee, Jin Hoon Choi, and Kwang Soon Lee

Overview of Linearization Based NLMPC
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State Estimation

The following two steps are performed at t = k:

� Model Prediction

X(kjk � 1) �=

2
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x(kjk � 1)

w(kjk � 1)

3
775

=

2
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Fts(x(k � 1jk � 1); u(k � 1); d(k � 1); w(k � 1jk � 1))

w(k � 1jk � 1)

3
775

Hence, this step involves nonlinear ODE integration for one

sample interval.

� Measurement Correction

X(kjk) = X(kjk � 1) +Kk(ŷ(k)� y(kjk � 1)| {z }
prediction error

)

where y(kjk � 1) = g(X(kjk � 1)).

Kk is the update gain (\�lter gain"):

{ Linear update structure is retained (suboptimal).

{ The update gain needs to be varied with time due to the

nonlinearity.

{ The gain matrix can be computed using the model

linearized with respect to the current state estimate and

using linear �ltering theory =) Extended Kalman Filter

(see the attached paper by Lee and Ricker for details).
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Prediction

One can follow the similar argument as before and construct
2
666666666664

x(k + 1jk)

x(k + 2jk)
...

x(k + pjk)

3
777777777775
=

2
666666666664

Fts(x(kjk); u(k � 1); d(k); w(kjk))

Fts(x(k + 1jk); u(k � 1); d(k); w(k + 1jk))
...

Fts(x(k + p� 1jk); u(k � 1); d(k); w(k + p� 1jk))

3
777777777775

| {z }
F : from ODE integration

+

2
666666666664

Bu
k 0 � � � 0

AkB
u
k +Bu

k Bu
k � � � 0

... ... . . . ...
Pp
j=1A

j�1
k Bu

k

Pp�1
j=1 A

j�1
k Bu

k � � �
Pp�m+1
j=1 A

j�1
k Bu

k

3
777777777775

2
666666666664

�u(kjk)

�u(k + 1jk)
...

�u(k +m� 1jk)

3
777777777775

| {z }
SU
k
: dynamic matrix

where w(k + ijk) = w(kjk) and Ak and B
u
k are computed through

� Linearization
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0
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� Discretization
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Denote the above as

X (k + 1jk) = F(x(kjk); u(k � 1); d(k); w(kjk))

+SU
k (x(kjk); u(k � 1); d(k); w(kjk))�U(k)
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Summary

At t = k, we are given the previous estimate

(x(k � 1jk � 1); w(k � 1jk � 1)), previous inputs

d(k � 1); u(k � 1), and new measurements ŷ(k), d(k). The

following steps need to be performed:

1. 1-Step Model Integration: Integrate the ODE for one

time interval to obtain

X(kjk � 1) �=

2
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x(kjk � 1)

w(kjk � 1)

3
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=

2
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Fts(x(k � 1jk � 1); u(k � 1); d(k � 1); w(k � 1jk � 1))

w(k � 1jk � 1)

3
775

2. Model Linearization: Linearize the ODE and the

measurement model with respsect to X(k � 1jk � 1) and

X(kjk � 1).

3. Filter Gain Computation: Obtain the �lter gain matrix

Kk using the linearized model matrices (see the details in the

attached paper by Lee and Ricker).

4. Measurement Update of X(k): Update the estimate for

X(k) based on the model prediction error:

X(kjk) = X(kjk � 1) +Kk(ŷ(k)� y(kjk � 1)| {z }
prediction error

)
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5. Model Linearization: Linearize the ODE model again with

respect to the updated state X(kjk).

6. Dynamic Matrix Computation: Use the linearized

model matrices to construct the dynamic matrix

SU
k (x(kjk); u(k � 1); d(k); w(kjk)) according to the formula

given earlier.

7. p-Step Model Integration: Integrate the ODE model for

p time steps starting from x(kjk) and keeping inputs constant

at u(t) = u(k � 1), d(t) = d(k) and w(t) = w(kjk) for

k � t < k + p.

The prediction equation is

X (k + 1jk = F(x(kjk); u(k � 1); d(k); w(kjk))

+SU
k (x(kjk); u(k � 1); d(k); w(kjk))�U(k)

8. Input Computation: Solve QP to �nd U(k).

9. Input Implementation: Implement

u(k) = u(k � 1) + u(kjk).
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2.4 EXAMPLE: PAPER MACHINE HEADBOX

CONTROL

Problem Description

N : consistency of stock entering the feed tank.

Nw: consistency of recycled white water.

Gp: owrate of stock entering the feed tank.

Gw: owrate of recycled white water.

H1: liquid level in the feed tank.

H2: liquid level in the headbox.

N1: consistency in the feed tank.

N2: consistency in the headbox.
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Some Speci�c Design Information

� ODE model for the above process is bilinear (see Lee and

Ricker for model equations).

� We model Nw unmeasured disturbance as random walk, i.e.,

xe(k + 1) = xe(k) + e(k)

Nw(k) = xe(k)

� We used the extended Kalman �lter for state update.

� We used the following parameters for control computation:

p = 5; m = 3; �y = diagf1; 1; 0g; �u = �diagf1; 1g
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