Relative Rates of Reactions

If the rate law depends on more than one species, we MUST relate the concentrations of different species to each other. A stoichiometric table presents the stoichiometric relationships between reacting molecules for a single reaction.

\[
aA + bB \rightarrow cC + dD \quad (2-1)
\]

In formulating our stoichiometric table, we shall take species A as our basis of calculation (i.e., limiting reactant) and then divide through by the stoichiometric coefficient of A. In order to put everything on a basis of "per mole of A."

\[
A + \frac{b}{a}B \rightarrow \frac{c}{a}C + \frac{d}{a}D \quad (2-2)
\]

The relationship can be expressed directly from the stoichiometry of the reaction.

\[
-r_A = -\frac{r_B}{b} = \frac{r_C}{c} = \frac{r_D}{d} \quad (3-1)
\]
Let’s take A as the basis of calculation

a species A is one of the reactants that is disappearing as a result of the reaction. The limiting reactant is usually chosen as our basis for calculation.

The rate of disappearance of A, $-r_A$, depends on temperature and concentration and it can be written as the product of the reaction constant k and

$$-r_A(T, C) = k_A(T) \times f(C_A, C_B, ...)$$

Rate raw (Kinetic expression) : the algebraic equation that relates $-r_A$ to the species concentration

The dependence of the reaction rate $-r_A$ on the concentration of the species is almost without exception determined by experimental observation.

The order of a reaction refers to the powers to which the concentrations are raised in the kinetic rate law.

$$-r_A = k_A C_A^a C_B^0$$

3-3

a order with respect to reactant A
b order with respect to reactant B
n (=a+b) : the overall order of the reaction

The order of a reaction refers to the powers to which the concentrations are raised in the kinetic rate law.
농도 대 활동도 (concentration vs. activity)

반응속도는 활동도 \(a_i \) \((a_i = \gamma_i C_i) \)의 항으로 나타남

\[
-r_A = k'_A a_A^\alpha a_B^\beta
\]

많은 반응계의 경우에 활동도계수 \(\gamma_i \)는 반응이 진행되는 동안 현저하게 변화하지 않으므로 반응속도 \(k_A \)에 흡수.

\[
-r_A = k'_A a_A^\alpha a_B^\beta = k'_A (\gamma_A C_A)^\alpha (\gamma_B C_B)^\beta = (k'_A \gamma_A^\alpha \gamma_B^\beta) C_A^\alpha C_B^\beta = k_A C_A^\alpha C_B^\beta
\]

\[
-r_A = k_A C_A^\alpha C_B^\beta
\]

Unit of Specific Reaction Rate

The unit of the specific reaction rate, \(k_A \), vary with the order of the reaction.

\[k = \frac{(\text{Concentration})^n}{\text{Time}} \]

\[
A \rightarrow \text{products} \quad k = \frac{\text{mol}}{(\text{dm}^3) \cdot \text{s}} \quad (3-4)
\]

0차 Zero - order : \(- r_A = k_A \) \(\{k\} = \frac{\text{mol}}{(\text{dm}^3) \cdot \text{s}} \)

1차 First - order : \(- r_A = k_A C_A \) \(\{k\} = \frac{1}{s} \) \((3-5) \)

2차 Second - order : \(- r_A = k_A C_A^2 \) \(\{k\} = \frac{(\text{dm}^3)}{\text{mol} \cdot \text{s}} \) \((3-6) \)

3차 Third - order : \(- r_A = k_A C_A^3 \) \(\{k\} = \frac{(\text{dm}^3 / \text{mol})^2}{s} \) \((3-7) \)

허가없이 본 수업자료의 무단 배포 및 사용을 불허합니다.
Elementary and Non-elementary Reaction

Kinetic rate raw

“**Elementary reaction**”

기초반응

\[\text{O}^\bullet + \text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{O}^\bullet + \text{OH}^\bullet \]

\[-r_{\text{O}^\bullet} = k_{\text{O}^\bullet} \cdot C_{\text{CH}_3\text{OH}} \]

1\text{st} \text{ order w.r.t. atomic oxygen}

1\text{st} \text{ order w.r.t. methanol}

overall is 2\text{nd} \text{ order reaction}

“**Non-elementary reaction**”

비기초반응

\[\text{CO} + \text{Cl}_2 \rightarrow \text{COCl}_2 \]

\[-r_{\text{CO}} = k_{\text{CO}} \cdot C_{\text{Cl}_2}^{3/2} \]

1\text{st} \text{ order w.r.t. carbon monoxide}

3/2 \text{ order w.r.t. chorine}

overall is 5/2 \text{ order reaction}

In general, first- and second-order reactions are more commonly observed.

Reversible Reactions

All rate raws for reversible reactions must reduce to the thermodynamic relationship relating the reacting species concentrations at equilibrium. At equilibrium, the rate of reaction is identically zero for all species (i.e., \(-r_A = 0\)). For the general reaction

\[
aA + bB \rightleftharpoons cC + dD
\]

The concentrations at equilibrium are related by the thermodynamic relationship

\[
K_c = \frac{C_c^c \cdot C_d^d}{C_a^a \cdot C_b^b} \quad \left[\frac{(mol/ dm^3)^{d+c-b-a}}{} \right]
\]

Reversible Reactions

\[
2C_6H_6 \xrightarrow{k_f} C_{12}H_{10} + H_2 \\
2B \xrightarrow{k_r} D + H_2
\]

<table>
<thead>
<tr>
<th>The rate of disappearance of benzene</th>
<th>The rate of formation of benzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2C_6H_6 \xrightarrow{k_f} C_{12}H_{10} + H_2]</td>
<td>[C_{12}H_{10} + H_2 \xrightarrow{k_r} 2C_6H_6]</td>
</tr>
<tr>
<td>[r_{B,,\text{forward}} = -k_B C_B^2]</td>
<td>[r_{B,,\text{reverse}} = k_B C_D C_{H_2}]</td>
</tr>
</tbody>
</table>

The net rate of formation of benzene

\[r_B \equiv r_{B,\,\text{net}} = r_{B,\,\text{forward}} + r_{B,\,\text{reverse}}\]

\[r_B = -k_B C_B^2 + k_B C_D C_{H_2}\]

Reversible Reactions

The rate law for the rate of disappearance of benzene

\[-r_B = k_B C_B^2 - k_{-B} C_D C_{H_2} = k_B \left(C_B^2 - \frac{k_B}{k_{-B}} C_D C_{H_2}\right)\]

\[-r_B = k_B \left(C_B^2 - \frac{C_D C_{H_2}}{K_C}\right)\]

\[k_B k_{-B} = K_C = \text{concentration equilibrium constant}\]
Arrhenius equation

\[k_A(T) = A e^{-\frac{E}{RT}} \]

Specific reaction rate (constant)

Activation energy, J/mol or cal/mol

Frequency factor or pre-exponential factor

Mathematical number \(e = 2.71828 \ldots \)

Gas constant

8.314 J/mol \(\cdot \) K
1.987 cal/mol \(\cdot \) K
8.314 kPa \(\cdot \) dm\(^3\)/mol \(\cdot \) K

Absolute Temperature, K

Arrhenius equation

Activation energy \(E \) is determined experimentally by carrying out the reaction at several different temperature.

\[\ln k_A = \ln A - \frac{E}{R} \left(\frac{1}{T} \right) \]

\(T \rightarrow 0, k_A \rightarrow 0 \)
\(T \rightarrow \infty, k_A \rightarrow A \)
Present Status of Our Approach to Reactor Sizing and Design

Design Equations

<table>
<thead>
<tr>
<th></th>
<th>Differential form</th>
<th>Algebraic form</th>
<th>Integral form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>(N_{A0} \frac{dX}{dt} = -r_AV)</td>
<td>(t = N_{A0} \int_0^X \frac{dX}{-r_AV})</td>
<td></td>
</tr>
<tr>
<td>CSTR</td>
<td>(V = \frac{F_{A0}X}{-r_A})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFR</td>
<td>(F_{A0} \frac{dX}{dW} = -r_A)</td>
<td>(V = F_{A0} \int_0^X \frac{dX}{-r_A})</td>
<td></td>
</tr>
<tr>
<td>PBR</td>
<td>(F_{A0} \frac{dX}{dW} = -r_A')</td>
<td>(W = F_{A0} \int_0^X \frac{dX}{-r_A'})</td>
<td></td>
</tr>
</tbody>
</table>

Stoichiometric Table

If the rate law depends on more than one species, we **MUST** relate the concentrations of different species to each other. A stoichiometric table presents the stoichiometric relationships between reacting molecules for a single reaction.

\[aA + bB \longrightarrow cC + dD \] \hspace{1cm} (2-1)

\[\frac{-r_A}{a} = \frac{-r_B}{b} = \frac{r_C}{c} = \frac{r_D}{d} \] \hspace{1cm} (3-1)

In formulating our stoichiometric table, we shall take species A as our basis of calculation (i.e., limiting reactant) and then divide through by the stoichiometric coefficient of A

\[\frac{b}{a} B \longrightarrow \frac{c}{a} C + \frac{d}{a} D \] \hspace{1cm} (2-2)

In order to put everything on a basis of "per mole of A."

허가없이 본 수업자료의 무단 배포 및 사용을 불허합니다.
Stoichiometric Table for a Batch System

<table>
<thead>
<tr>
<th>Species</th>
<th>Initially (mol)</th>
<th>Change (mol)</th>
<th>Remaining (mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N_{A0}</td>
<td>$-(N_{A0}X)$</td>
<td>$N_A = N_{A0} - N_{A0}X$</td>
</tr>
<tr>
<td>B</td>
<td>N_{B0}</td>
<td>$- \frac{b}{a} (N_{A0}X)$</td>
<td>$N_B = N_{B0} - \frac{b}{a} N_{A0}X$</td>
</tr>
<tr>
<td>C</td>
<td>N_{C0}</td>
<td>$+ \frac{c}{a} (N_{A0}X)$</td>
<td>$N_C = N_{C0} + \frac{c}{a} N_{A0}X$</td>
</tr>
<tr>
<td>D</td>
<td>N_{D0}</td>
<td>$+ \frac{d}{a} (N_{A0}X)$</td>
<td>$N_D = N_{D0} + \frac{d}{a} N_{A0}X$</td>
</tr>
<tr>
<td>I (inert)</td>
<td>N_{I0}</td>
<td></td>
<td>$N_I = N_{I0}$</td>
</tr>
<tr>
<td>Total</td>
<td>N_{T0}</td>
<td></td>
<td>$N_T = N_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} + 1 \right) N_{A0}X$</td>
</tr>
</tbody>
</table>

$N_T = N_{T0} + 6N_{A0}X$

허가없이 본 수업자료의 무단 배포 및 사용을 불허합니다.

Constant Volume Batch Reactor (=constant density system)

\[V = V_0 \]

\[C_A = \frac{N_{A0}(1-X)}{V_0} = C_{A0}(1-X) \] \hspace{1cm} (4-6)

\[C_B = N_{A0} \frac{[(N_{B0}/N_{A0}) - (b/a)X]}{V_0} = N_{A0} \frac{[\Theta_B - (b/a)X]}{V_0} = C_{A0} \left(\Theta_B - \frac{b}{a}X \right) \] \hspace{1cm} (4-7)

\[C_C = N_{A0} \frac{[(N_{C0}/N_{A0}) + (c/a)X]}{V_0} = C_{A0} \left(\Theta_C + \frac{c}{a}X \right) \] \hspace{1cm} (4-8)

\[C_D = N_{A0} \frac{[(N_{D0}/N_{A0}) + (d/a)X]}{V_0} = C_{A0} \left(\Theta_D + \frac{d}{a}X \right) \] \hspace{1cm} (4-9)

\[\Theta_i = \frac{N_{I0}}{N_{A0}} = \frac{C_{I0}}{C_{A0}} = \frac{y_{I0}}{y_{A0}} \]

허가없이 본 수업자료의 무단 배포 및 사용을 불허합니다.
Flow Systems

Entering
\[A + \frac{b}{a} B \rightarrow \frac{c}{a} C + \frac{d}{a} D \]

Leaving
\[F_A \quad F_B \quad F_C \quad F_D \quad F_I \]

Molar flow rate
\[C_A = \frac{F_A}{V} = \frac{\text{moles/time}}{\text{liters/time}} = \frac{\text{moles}}{\text{liter}} \]

Volumetric flow rate
\[\Theta_i = \frac{F_i0}{V} = \frac{C_{i0}V_0}{C_{A0}V_0} = \frac{C_{i0}}{C_{A0}} \frac{y_{i0}}{y_{A0}} \]

Equations for Concentrations in Flow Systems

Batch System
\[A + \frac{b}{a} B \rightarrow \frac{c}{a} C + \frac{d}{a} D \]

Flow System

\[C_A = \frac{N_A}{V} = \frac{N_{A0}(1-X)}{V} \]
\[C_B = \frac{N_B}{V} = \frac{N_{B0}-(b/a)N_{A0}X}{V} \]
\[C_C = \frac{N_C}{V} = \frac{N_{C0}+(c/a)N_{A0}X}{V} \]
\[C_D = \frac{N_D}{V} = \frac{N_{D0}+(d/a)N_{A0}X}{V} \]

\[C_A = \frac{F_A}{V} = \frac{F_{A0}(1-X)}{V} \]
\[C_B = \frac{F_B}{V} = \frac{F_{B0}-(b/a)F_{A0}X}{V} \]
\[C_C = \frac{F_C}{V} = \frac{F_{C0}+(c/a)F_{A0}X}{V} \]
\[C_D = \frac{F_D}{V} = \frac{F_{D0}+(d/a)F_{A0}X}{V} \]
Stoichiometric Table for a Flow System

<table>
<thead>
<tr>
<th>Species</th>
<th>Feed rate to reactor (mol/time)</th>
<th>Change in reactor (mol/time)</th>
<th>Effluent rate from reactor (mol/time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F_{A0}</td>
<td>$-(F_{A0}X)$</td>
<td>$F_A = F_{A0}(1-X)$</td>
</tr>
<tr>
<td>B</td>
<td>$F_{B0} = \Theta_B F_{A0}$</td>
<td>$-\frac{b}{a}(F_{A0}X)$</td>
<td>$F_B = F_{A0}\left(\Theta_B - \frac{b}{a}X\right)$</td>
</tr>
<tr>
<td>C</td>
<td>$F_{C0} = \Theta_C F_{A0}$</td>
<td>$+\frac{c}{a}(F_{A0}X)$</td>
<td>$F_C = F_{A0}\left(\Theta_C + \frac{c}{a}X\right)$</td>
</tr>
<tr>
<td>D</td>
<td>$F_{D0} = \Theta_D F_{A0}$</td>
<td>$+\frac{d}{a}(F_{A0}X)$</td>
<td>$F_D = F_{A0}\left(\Theta_D + \frac{d}{a}X\right)$</td>
</tr>
<tr>
<td>I(inert)</td>
<td>$F_{I0} = \Theta_I F_{A0}$</td>
<td></td>
<td>$F_I = F_{A0}\Theta_I$</td>
</tr>
<tr>
<td>Total</td>
<td>F_{T0}</td>
<td></td>
<td>$F_T = F_{T0} + \left(\frac{d}{a} + \frac{c}{a} - \frac{b}{a} - 1\right)F_{A0}X$</td>
</tr>
</tbody>
</table>

$$F_T = F_{T0} + F_{A0}\delta X$$

허가없이 본 수업자료의 무단 배포 및 사용을 불허합니다.