Chapter 3: Fundamentals of Crystallography

ISSUES TO ADDRESS...

• What is the difference in atomic arrangement between crystalline and noncrystalline solids?

• How are crystallographic directions and planes named?

• Under what circumstances does a material property vary with the measurement direction?
Energy and Packing

- Non dense, random packing

- Dense, ordered packing

Dense, ordered packed structures tend to have lower energies.
Materials and Packing

Crystalline materials...
- atoms pack in periodic, 3D arrays
- typical of: metals
 - many ceramics
 - some polymers

Noncrystalline materials...
- atoms have no periodic packing
- occurs for: complex structures
 - rapid cooling

"Amorphous" = Noncrystalline
= Vitreous = Glassy

Adapted from Fig. 3.23(b), Callister & Rethwisch 8e.
Adapted from Fig. 3.23(a), Callister & Rethwisch 8e.
Crystal Systems

Unit cell: smallest repetitive volume which contains the complete lattice pattern of a crystal.

7 crystal systems

14 crystal lattices

\[a, b, \text{ and } c \] are the lattice constants
<table>
<thead>
<tr>
<th>Crystal System</th>
<th>Axial Relationships</th>
<th>Interaxial Angles</th>
<th>Unit Cell Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>$a = b = c$</td>
<td>$\alpha = \beta = \gamma = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>Hexagonal</td>
<td>$a = b \neq c$</td>
<td>$\alpha = \beta = 90^\circ, \gamma = 120^\circ$</td>
<td></td>
</tr>
<tr>
<td>Tetragonal</td>
<td>$a = b \neq c$</td>
<td>$\alpha = \beta = \gamma = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>Rhombohedral (Trigonal)</td>
<td>$a = b = c$</td>
<td>$\alpha = \beta = \gamma \neq 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>$a \neq b \neq c$</td>
<td>$\alpha = \beta = \gamma = 90^\circ$</td>
<td></td>
</tr>
<tr>
<td>Monoclinic</td>
<td>$a \neq b \neq c$</td>
<td>$\alpha = \gamma = 90^\circ \neq \beta$</td>
<td></td>
</tr>
<tr>
<td>Triclinic</td>
<td>$a \neq b \neq c$</td>
<td>$\alpha \neq \beta \neq \gamma \neq 90^\circ$</td>
<td></td>
</tr>
</tbody>
</table>
Point Coordinates

Point coordinates for unit cell center are
\[\frac{a}{2}, \frac{b}{2}, \frac{c}{2} \]
\[\frac{1}{2} \frac{1}{2} \frac{1}{2} \]

Point coordinates for unit cell corner are 111

Translation: integer multiple of lattice constants \(\rightarrow\) identical position in another unit cell
Crystallographic Directions

Algorithm

1. Determine coordinates of vector tail, pt. 1: \(x_1, y_1, \) & \(z_1 \); and vector head, pt. 2: \(x_2, y_2, \) & \(z_2 \).
2. Tail point coordinates subtracted from head point coordinates.
3. Normalize coordinate differences in terms of lattice parameters \(a, b, \) and \(c \):
 \[
 \frac{x_2 - x_1}{a} \quad \frac{y_2 - y_1}{b} \quad \frac{z_2 - z_1}{c}
 \]
4. Adjust to smallest integer values
5. Enclose in square brackets, no commas

\[
[uvw]
\]

ex: pt. 1 \(x_1 = 0, y_1 = 0, z_1 = 0 \)
pt. 2 \(x_2 = a, y_2 = 0, z_2 = c/2 \)

\[
\frac{a - 0}{a} \quad 0 - 0 \quad \frac{c/2 - 0}{c}
\]

=> 1, 0, 1/2 => 2, 0, 1

=> [201]
Crystallographic Directions

\[
\begin{align*}
[011] \\
[111] \\
[100] \\
[110]
\end{align*}
\]
Crystallographic Directions

Example 2:

pt. 1 \(x_1 = a, \ y_1 = b/2, \ z_1 = 0 \)

pt. 2 \(x_2 = -a, \ y_2 = b, \ z_2 = c \)

\[
\begin{array}{ccc}
-a - a & b - b/2 & c - 0 \\
\hline
a & b & c
\end{array}
\]

=> -2, 1/2, 1

Multiplying by 2 to eliminate the fraction

-4, 1, 2 => [\overline{412}] where the overbar represents a negative index

families of directions <uvw>
Determination of HCP Crystallographic Directions

Algorithm

1. Determine coordinates of vector tail, pt. 1: \(x_1, y_1, \) \& \(z_1; \) and vector head, pt. 2: \(x_2, y_2, \) \& \(z_2. \)
in terms of three axis \((a_1, a_2, \text{and } z)\)
2. Tail point coordinates subtracted from head
point coordinates and normalized by unit cell
dimensions \(a \) and \(c \)
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas,
for three-axis coordinates \([u'v'w']\)
5. Convert to four-axis Miller-Bravais lattice
coordinates using equations below:
\[
\begin{align*}
 u &= \frac{1}{3} (2u' - v') \\
 v &= \frac{1}{3} (2v' - u') \\
 t &= -(u + v) \\
 w &= w'
\end{align*}
\]
6. Adjust to smallest integer values and
enclose in brackets \([uvtw]\)
Determination of HCP Crystallographic Directions

Determine indices for green vector

Example

<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tail location</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Head location</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>2. Normalized</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3. Reduction</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4. Brackets</td>
<td>[110]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Convert to 4-axis parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 u &= \frac{1}{3} \left[(2)(1) - (1) \right] = \frac{1}{3} \\
 v &= \frac{1}{3} \left[(2)(1) - (1) \right] = \frac{1}{3} \\
 t &= -\left(\frac{1}{3} + \frac{1}{3} \right) = -\frac{2}{3} \\
 w &= 0
\end{align*}
\]

6. Reduction & Brackets

$1/3, 1/3, -2/3, 0 \quad \Rightarrow \quad 1, 1, -2, 0 \quad \Rightarrow \quad [11\bar{2}0]$
Crystallographic Planes

Adapted from Fig. 3.7, *Callister & Rethwisch 9e.*
Crystallographic Planes

- **Miller Indices**: Reciprocals of the (three) axial intercepts for a plane, cleared of fractions & common multiples. All parallel planes have same Miller indices.

- **Algorithm**
 1. Read off intercepts of plane with axes in terms of a, b, c
 2. Take reciprocals of intercepts
 3. Reduce to smallest integer values
 4. Enclose in parentheses, no commas i.e., (hkl)
Crystallographic Planes

example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intercepts</td>
<td>1</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>2. Reciprocals</td>
<td>$1/1$</td>
<td>$1/1$</td>
<td>$1/\infty$</td>
</tr>
<tr>
<td>3. Reduction</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4. Miller Indices</td>
<td>(110)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

example

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intercepts</td>
<td>$1/2$</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2. Reciprocals</td>
<td>$1/\frac{1}{2}$</td>
<td>$1/\infty$</td>
<td>$1/\infty$</td>
</tr>
<tr>
<td>3. Reduction</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. Miller Indices</td>
<td>(100)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Crystallographic Planes

example \(a \quad b \quad c \)
1. Intercepts \(1/2 \quad 1 \quad 3/4 \)
2. Reciprocals \(1/\frac{1}{2} \quad 1/1 \quad 1/\frac{3}{4} \)
 \(2 \quad 1 \quad 4/3 \)
3. Reduction \(6 \quad 3 \quad 4 \)
4. Miller Indices \((634) \)

Family of Planes \(\{hkl\} \)

Ex: \(\{100\} = (100), (010), (001), (\bar{1}00), (0\bar{1}0), (00\bar{1}) \)
Crystallographic Planes (HCP)

- In hexagonal unit cells the same idea is used

<table>
<thead>
<tr>
<th>example</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intercepts</td>
<td>1</td>
<td>∞</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>2. Reciprocals</td>
<td>1</td>
<td>$1/\infty$</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>3. Reduction</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>4. Miller-Bravais Indices</td>
<td>(1011)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Fig. 3.8, Callister & Rethwisch 9e.
Crystallographic Planes (HCP)
Single Crystalline vs. Polycrystalline

Fig. 03.09

Photograph courtesy of irocks.com, Megan Foreman photo.

Fig. 03.10

Single Crystalline vs. Polycrystalline
Summary

• Atoms may assemble into **crystalline** or **amorphous** structures.

• **Crystallographic points, directions and planes** are specified in terms of indexing schemes. Crystallographic directions and planes are related to **atomic linear densities** and **planar densities**.

• Materials can be **single crystals** or **polycrystalline**. Material properties generally vary with single crystal orientation (i.e., they are **anisotropic**), but are generally non-directional (i.e., they are **isotropic**) in polycrystals with randomly oriented grains.