Relief Systems
Relief Scenarios

- A single relief event requires a particulate vent area and valve size
- Relief scenarios are determined based on a PHA
- For each scenario, a vent area is calculated
- The worst-case scenario requires the largest vent area.
- Ex. Relief scenarios: Ex. 8-2, p. 363, Tab 8-2, p. 365
A rupture disc is to protect PSV-1b from the reactive monomers (plugging from polymerization). A conventional relief valve is also included. A conventional relief valve for liquid service only is noted as well.
Ex 8-2 Relief Scenarios

<table>
<thead>
<tr>
<th>Relief Identifications</th>
<th>Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSV-1a & PSV-1b</td>
<td>Vessel full of I and P-1 is accidentally actuated</td>
</tr>
<tr>
<td></td>
<td>Cooling coil is broken and water enters at 200gpm and 50 psig</td>
</tr>
<tr>
<td></td>
<td>N\textsubscript{2} regulator fails, giving critical flow in 1” line</td>
</tr>
<tr>
<td></td>
<td>Runaway rxn (Loss of cooling)</td>
</tr>
<tr>
<td>PSV-2</td>
<td>V1 is accidentally closed; systems need relief for 100 gpm at 50 psig</td>
</tr>
<tr>
<td>PSV-3</td>
<td>Confined water line is heated with 125-psig steam</td>
</tr>
<tr>
<td>PSV-4</td>
<td>N\textsubscript{2} regulator fails, giving critical flow in 1/2” line</td>
</tr>
<tr>
<td></td>
<td>The other R-1 scenario will be relieved via PSV-1</td>
</tr>
<tr>
<td>PSV-5</td>
<td>Water blocked inside coil, and heat of rxn causes thermal expansion</td>
</tr>
</tbody>
</table>

11/6/2011
Data for Relief Sizing

- Physical property data
- Chemical reaction rate behavior
- Single phase releases: vapor, liquid, solid
- Multiple phase releases
- Runaway reaction relief: liquid & vapor
- Gas or dust explosions from combustion apparatus
- These data are part of the process safety information needed for a PHA
Reaction Behavior Measurement

- For accurate relief vent area determinations, experimental data are most important.
- Calorimeters are used to characterize behavior during normal reaction or runaway.
- Sample is progressively heated to search for an exothermic reaction.
- Raw data includes T, P, time, amount of non-condensable gas formed, onset temperature, maximum heat rate, maximum pressure rate.
Runaway reaction temperature data acquired using the vent sizing package (VSP)
Runaway reaction pressure data acquired using the vent sizing package.
Runaway Reaction Behavior

Rate of Heat Production

Heat generated Q_g > Q_r

Heat Removal Q_r

Heat Generated

Temperature

Runaway Region

11/6/2011
Preventing a Runaway Reaction

- Measures to prevent a polymerization reaction runaway due to loss of coolant:
 - Coolant flow gauge with low-flow alarm
 - Stirrer rpm gauge with alarm
 - Stirrer and coolant interlock for monomer addition (inherent safety principle)
 - Monomer addition stopped if coolant control valve near 100 % open.
- Temperature sensors along length of reactor to check for normal profile and upset indication
Relief Installation Guidelines

- Industrial standards published by the American Society of Mechanical Engineers (ASME) and by the American Petroleum Institute (API)
 - Stress analysis and reaction forces for material flow through relief systems: API standards
 - Relief system weight
 - Static pressure, pressure changes
Relief Installation Examples

- Two rupture disks with pressure gauge between to detect for leakage: toxic materials
- Two rupture disks connected with 3-way valve to allow maintenance on one disk
- Backup rupture disk in parallel with a smaller relief valve set at a lower pressure.
- Rupture disk to protect more expensive relief valve with a pressure gauge between them
Location Guidelines

- Relief valves on all vessels
- Pressure or vacuum protection for vessels
- Steam jackets
- Pipes between valves
- Pumps, compressors, turbines on discharge
- High pressure connected to low pressure
- Safety/cost balance: relief device vs design for highest pressure
<table>
<thead>
<tr>
<th>System</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| Vessel | 1. Rupture Disc in Corrosive Service.
2. Or for Highly Toxic Materials where Spring Loaded Valve May Weep. |
<p>| | Two Rupture Discs in Extremely Corrosive Service. The 1st May Periodically Need to be Replaced. |
| | Rupture Disc and Spring Loaded Relief. Normal Relief May Go Through Spring Loaded Device, and Rupture Disc is Back-up for Larger Reliefs. |
| | Two Reliefs in Series. The Rupture Disc Protects Against Toxicity or Corrosion. The Spring Loaded Relief Closes and Minimizes Leaks. |
| | Two Rupture Discs with Special Valve which Keeps One Valve Always Directly Connected to Vessel. This Type Design is Good for Polymerization Reactors where Periodic Cleaning is Necessary. |</p>
<table>
<thead>
<tr>
<th>System</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. Pressure Drop Not More Than 3% of Set Pressure</td>
</tr>
<tr>
<td></td>
<td>B. Long Radius Elbow</td>
</tr>
<tr>
<td></td>
<td>C. If Distance is Greater Than 10 Feet, weight and Reaction Forces Should be Supported Below the Long Radius Elbow.</td>
</tr>
<tr>
<td></td>
<td>• Orifice Area of a Single Safety Relief in Vapor Service, Should Not Exceed 2% of the Cross Sectional Area of the Protected Line.</td>
</tr>
<tr>
<td></td>
<td>• Multiple Valves with Staggered Settings May be Required.</td>
</tr>
<tr>
<td></td>
<td>A. Process Lines Should Not be Connected to Safety Valve Inlet Piping.</td>
</tr>
<tr>
<td></td>
<td>A. Turbulence Causing Device</td>
</tr>
<tr>
<td></td>
<td>B. Dimension (B) shown below:</td>
</tr>
<tr>
<td></td>
<td>Device Causing</td>
</tr>
<tr>
<td>Regulator or Valve:</td>
<td>25</td>
</tr>
<tr>
<td>2 Ells or Bends Not in Same Plane: 20</td>
<td>2 Ells or Bends in Same Plane: 15</td>
</tr>
</tbody>
</table>

11/6/2011
Total Containment Systems

- Relief materials are mostly vented to total containment and treatment systems
- Knockout: separation of liquid from vapor; coolant for high boiling material (Ex 8-3, p. 374)
- Liquid collected, transferred, incinerated
- Vapor transferred to treatment, e.g., condenser (high boiling), scrubber (toxic), incinerator, flare (combustible, toxic), combination
Relief containment system with blowdown drum. The blowdown drum separates the vapor from the liquid.
Material Treatment

- **Flares**: flammable or toxic materials converted to less hazardous combustion products
 - Flare design: for a stable flame and a non-hazardous radiation (Ex 8-4, p. 375)

- **Scrubbers**: columns for surface contact; convert to less hazardous or more manageable materials
 - Scrubber examples: caustic bath (H₂S), water (NO₂)