10. Catalysis & Catalytic Reaction

- Basic Define
 - Catalyst, catalytic mechanism, rate limit step.

- Catalytic Mechanism
 - Describe the steps
 - Derive a rate law and a mechanism and rate limiting step consistent with the experimental data

- Use Regression to discriminate between reaction rate laws and mechanisms
10. Catalysis & Catalytic Reaction

- Size isothermal reactors for reactions with Langmuir-Hinschelwood kinetics
- Catalyst deactivation
 - Type and the reactor types
 - Describe schemes that can help offset the deactivation
- Catalyst decay and conversion
 - CSTRs and PFRs with temperature-time trajectories, moving bed reactors, and straight through transport reactors.
- Describe the steps in Chemical Vapor Deposition (CVD)
1. Catalysis I

- History
 - Over 2000 years
 - wine, cheese, bread
 - Jons Jakob Berzelius (1835)
 - small amount of foreign source could greatly affect the course of chemical reactions
 - Wilhelm Ostwald (1894)
 - substances accelerating the rate of chemical reactions without being consumed

- USD 3.5 billion/ yr, 2007
1. Catalysis II

- Definitions
 - Catalyst
 - a substances affecting the rate of reactions but emerges from the process unchanged
 - usually by promoting a different mechanism
 - Catalysis
 - the occurrence, study, and use of catalysts and catalytic process
1. Catalysis III

- Definitions 2
1. Catalysis IV

- **Catalyst Properties**
 - Large interfacial area
 - reaction occurs at the fluid-solid interface
 - Typical catalysts
 - inner porous structure
 - ex) silica-alumina cracking catalyst
 - pore volume of 0.6 cm3/g with avg diameter of 4 nm
 $\equiv 300$ m2/g
 - Raney nickel catalyst for hydrogenation
 - Molecular sieves - zeolite \equiv very high selectivity
 - Monolithic catalyst - sufficient active
1. Catalysis V

- Molecular Sieve 1

Molecular Sieve Type A Molecular Sieve Type X
1. Catalysis VI

- Molecular Sieve 2
1. Catalysis VII

- Molecular Sieve 3
1. Catalysis VIII

○ Monolithic Catalyst
1. Catalysis IX

- Supported Catalyst
 - Support
 • structural part of less active material(s)
 - Promoters
 • small amount of ingredients, increase activity
 - Examples
 • Pt-on-Al for petroleum reforming, Vanadium peroxide on silica for producing sulfuric acid
1. Catalysis X

- Supported Catalyst 2
1. Catalysis XI

- Unsupported Catalyst
 - Platinum gauze for ammonia oxidation, the promoted iron for ammonia synthesis, silica-alumina dehydrogenation catalyst
1. Catalysis XII

- Deactivation
 - Aging
 • gradual change in surface crystal structure
 - Poisoning
 • irreversible deposition of substances on the active site
 - Fouling (Coking)
 • deposit of material on the entire surface
 ➨ very fast
 • 2~3 minutes for catalytic cracking of naphtha
 ➨ very slow
 • automotive exhaust catalyst
1. Catalysis XIII

- Deactivation 2
1. Catalysis XIV

- Gas Phase Reaction with Solid Catalyst
 - Adsorption
 - physical adsorption (physisorption) 4~ 60 kJ/mol, similar to condensation
 - chemical adsorption (chemisorption) 40 ~ 400 kJ/mol, similar to heat of rxn
1. Catalysis XV

- Gas Phase Reaction with Solid Catalyst 2
 - Adsorbed molecule has rich in electron density enough to be reactive
1. Catalysis XVI

- Active Site

 - H. S. Taylor

 - Reaction is not catalyzed over the entire solid surface but only at certain active site or center

 - surface irregularities, dislocations, edges of crystals, cracks along grain boundaries

![Diagram of catalytic process]
1. Catalysis XVII

- Classification of Catalyst

![Graph showing the classification of catalysts based on turnover frequency and temperature.](image)
1. Catalysis XVIII

- Classification of Catalyst

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Catalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Halogenation–dehalogenation</td>
<td>CuCl₂, AgCl, Pd</td>
</tr>
<tr>
<td>2. Hydration–dehydration</td>
<td>Al₂O₃, MgO</td>
</tr>
<tr>
<td>3. Alkylation–dealkylation</td>
<td>AlCl₃, Pd, Zeolites</td>
</tr>
<tr>
<td>4. Hydrogenation–dehydrogenation</td>
<td>Co, Pt, Cr₂O₃, Ni</td>
</tr>
<tr>
<td>5. Oxidation</td>
<td>Cu, Ag, Ni, V₂O₅</td>
</tr>
<tr>
<td>6. Isomerization</td>
<td>AlCl₃, Pt/Al₂O₃, Zeolites</td>
</tr>
</tbody>
</table>
1. Steps in a Catalytic Reaction I

- ③ Adsorption of reactant(s)
- ④ Surface reaction
- ⑤ Desorption of product(s)

☞ Determine the most slow (rate determining) step
1. Steps in a Catalytic Reaction II

○ Step 1 Overview: External Diffusion

\[
\text{Rate} = k_C (C_{Ab} - C_{As}) \quad \text{where} \quad k_C = \frac{D_{AB}}{\delta}
\]
1. Steps in a Catalytic Reaction III

- **Step 1 Overview: External Diffusion**

![Graph showing the relationship between overall rate and \((U/D_p)\). The graph indicates that external diffusion is the slowest step until a certain point, after which external mass transfer becomes the slower step.](image)
1. Steps in a Catalytic Reaction IV

Step 2 Overview: Internal Diffusion

Rate = \(k_r C_{As} \)

For a large pellet, near the center might not be used when reaction ⇒ Waste!!
1. Steps in a Catalytic Reaction V

- Step 3: Adsorption

- Adsorption isotherms

 \[A + S \leftrightarrow A \cdot S \]

 - Total molar concentration of active sites

 \[C_t = C_v + C_{A \cdot S} + C_{B \cdot S} \]

- Adsorption as molecules (on nickel)

 \[CO + S \leftrightarrow CO \cdot S \] \(\uparrow\) nondissociated adsorption

- Adsorption as atoms (on iron)

 \[CO + 2S \leftrightarrow C \cdot S + O \cdot S \] \(\uparrow\) dissociated adsorption

 \(\uparrow\) Depends on surface conditions
1. Steps in a Catalytic Reaction VI

- **Step 3 : Adsorption 2**

- **Adsorption isotherms (Molecule) 1**
 - Rate of attachment \(= k_A P_{CO} C_v \)
 - Rate of detachment \(= k_{-A} P_{CO\cdot S} \)
 - Rate of adsorption
 \[
 r_{AD} = k_A P_{CO} C_v - k_{-A} C_{CO\cdot S}
 \]
 - Adsorption constant
 \[
 K_A = k_A / k_{-A}
 \]

\[
\begin{align*}
 r_{AD} &= k_A \left(P_{CO} C_v - \frac{C_{CO\cdot S}}{K_A} \right)
\end{align*}
\]
1. Steps in a Catalytic Reaction VII

- **Step 3 : Adsorption 3**
- **Adsorption isotherms (Molecule) 2**
 - CO is the only adsorbed one

 \[C_t = C_v + C_{CO.S} \]

- At equilibrium

 \[C_{CO.S} = K_A C_v P_{CO} \]

- In terms of attached CO

 \[C_{CO.S} = K_A C_v P_{CO} = K_A P_{CO} (C_t - C_{CO.S}) \]

\[C_{CO.S} = \frac{K_A P_{CO} C_t}{1 + K_A P_{CO}} \]
1. Steps in a Catalytic Reaction VIII

- Step 3: Adsorption 4
- Adsorption isotherms (Atomic) 1
 - CO is the only adsorbed one
 \[
 \text{CO} + 2\text{S} \leftrightarrow \text{C} \cdot \text{S} + \text{O} \cdot \text{S}
 \]
 - At equilibrium
 \[
 r_{\text{AD}} = k_A P_{\text{CO}} C_v^2 - k_{-A} C_{\text{O} \cdot \text{S}} C_{\text{C} \cdot \text{S}}
 \]
 - In terms of attached CO
 \[
 r_{\text{AD}} = k_A \left(P_{\text{CO}} C_v^2 - \frac{C_{\text{O} \cdot \text{S}} C_{\text{C} \cdot \text{S}}}{K_A} \right)
 \]
 \[
 k_A P_{\text{CO}} C_v^2 = k_{-A} C_{\text{O} \cdot \text{S}} C_{\text{C} \cdot \text{S}}
 \]
 - For \(C_{\text{O} \cdot \text{S}} = C_{\text{C} \cdot \text{S}} \)
 \[
 C_{\text{O} \cdot \text{S}} = C_v \sqrt{K_A P_{\text{CO}}}
 \]
1. Steps in a Catalytic Reaction IX

- **Step 3**: Adsorption 5
- **Adsorption isotherms (Atomic)** 2
 - Substitute for \(C_{O,S} \) and \(C_{C,S} \) in the site balance eq’n

\[
C_t = C_v + C_{O,S} + C_{C,S} = C_v + C_v \left(K_{CO} P_{CO} \right)^{1/2} + C_v \left(K_{CO} P_{CO} \right)^{1/2} = C_v \left(1 + 2 \left(K_{CO} P_{CO} \right)^{1/2} \right)
\]

- Solving for \(C_v \)

\[
C_v = \frac{C_t}{1 + 2 \left(K_{CO} P_{CO} \right)^{1/2}}
\]

- In terms of attached O

\[
C_{O,S} = \frac{\left(K_A P_{CO} \right)^{1/2} C_t}{1 + 2 \left(K_A P_{CO} \right)^{1/2}}
\]
1. Steps in a Catalytic Reaction XI

- **Step 4 : Surface Reaction 1**
- **Rate of adsorption of species A onto a solid surface**
 \[
 A + S \leftrightarrow A \cdot S
 \]

 \[
 r_{AD} = k_A \left(P_{CO} C_v - \frac{C_{CO \cdot S}}{K_A} \right)
 \]

- **Single site**