Chapter 4. Enzyme Kinetics

Enzyme Engineering

4.1 Why is enzyme kinetics important?

1. It provides valuable information for enzyme mechanism
2. It gives an insight into the role of an enzyme under physiological conditions
3. It can help show how the enzyme activity is controlled and regulated
4.2 How to obtain enzyme kinetics?

- Measure the formation of product or disappearance of substrate

\[
\text{D-Glucose} + \text{ATP} \xrightarrow{\text{Mg}^{2+}} \text{D-Glucose-6-phosphate} + \text{ADP}
\]

1. Discontinuous method
 - Add the enzyme, then stop the reaction at different time by adding acid to the sample
 - Measure the concentration of substrate or product using HPLC or other chromatography

2. Continuous method
 - NADPH absorb at 340nm, while NADP+ does not
 - If a coupled reaction is used, the second reaction should not be rate-limiting (sufficient amount of the enzyme must be provided)
 - Continuous method is not always available
4.2 How to obtain enzyme kinetics?

- Radioactive or fluorescent-labeling is useful

Precautions
- The substrate, buffers, etc. must be extremely pure
- Enzyme should be pure
- Enzyme should be stable as the assay is proceeded
- Temp, pH must be maintained carefully
- Once steady state is achieved, reaction rate must be constant and proportional to the enzyme added
- Initial rate of reaction should be measured to avoid possible complexity

4.3 How to analyze kinetic data?

4.3.1 One substrate reactions

\[
E + S \xrightarrow{k_1} ES \xrightarrow{k_{-1}} E + P
\]

Equilibrium assumption (1913)
- Second reaction is slower than first reverse reaction \((k_{-1} \gg k_2)\)

\[
V_0 = \frac{V_{\text{max}}[S]}{K_s + [S]}
\]

Michaelis–Menten eqn

\[
V_{\text{max}} = k_2[E]_0
\]

\[
K_s = \frac{[E][S]}{[ES]}
\]
4.3 How to analyze kinetic data?

- Steady state assumption (1925)
 - [ES] is constant

\[
V_0 = \frac{V_{\text{max}}[S]}{K_m + [S]}
\]

\[
V_{\text{max}} = k_2[E]_0
\]

\[
K_m = \frac{k_2 + k_{-1}}{k_1}
\]

4.3.1 One substrate reactions

- Lineweaver–Burk equation

\[
\frac{1}{v} = \frac{K_m}{[S]} \frac{1}{V_{\text{max}}} + \frac{1}{V_{\text{max}}}
\]

- Eddie–Hofstee equation

\[
\frac{v}{[S]} = \frac{V_{\text{max}}}{K_m} - \frac{v}{K_m}
\]
4.3.1 One substrate reactions

- Significance of the result
 1. k_{cat}/K_m is the substrate specificity
 \[v_S = \left(\frac{k_{cat}}{K_m} \right) [E][S_i] \]
 2. k_{cat}/K_m can be used for the applicability of equilibrium or steady state assumption
 If k_{cat}/K_m is near 10^9/mol dm$^{-3}$, this is steady state mechanism ($k_2 \gg k_{-1}$)
 3. K_m is $[S]$ where the rate is $\frac{1}{2} V_{max}$
 K_m may be the affinity of an enzyme to the substrate (not always)

4.3 How to analyze kinetic data?

4.3.2 Enzyme inhibition gives information on the active site of an enzyme
4.3.2 Enzyme Inhibition

1. Competitive inhibition

\[V_0 = \frac{V_{\text{max}} [S]}{\alpha K_m + [S]} \]

where \(\alpha = 1 + \frac{[I]}{K_I} \)

\[K_I = \frac{[E][I]}{[EI]} \]

(a) Competitive inhibition
4.3.2 Inhibition of the enzyme

\[V_0 = \frac{V_{\text{max}} [S]}{\alpha K_m + \alpha'[S]} \]

(b) Uncompetitive inhibition

\[\alpha' = 1 + \frac{[I]}{K_i}, \quad K_i' = \frac{[ES][I]}{[ESI]} \]
4.3 How to analyze kinetic data?

4.3.3 The effect of changes in pH

K_m and V_{max} are dependent on pH since the side chain of enzyme is ionized by pH change.

\[K_s = \frac{[E][H^+]}{[EH]^+} \]
\[\therefore [EH^+] = \frac{[E][H^+]}{K_s} \]

\[F = \frac{[E]}{[E] + [EH^+]} = \frac{K_s}{K_s + [H^+]} \]

\[V_{max} = (V_{max})_m \cdot \frac{K_s}{K_s + [H^+]} \] \hspace{1cm} (1)

\[V_{max} = (V_{max})_m \cdot F \]

\[V_{max} = \frac{(V_{max})_m}{1 + \frac{[H^+]}{K_{s_{a}}} + \frac{K_{s_{a}}}{[H^+]}}, \] \hspace{1cm} (2)

4.3.3 The effect of changes in pH

- $pH > pK_a + 1.5$
- $pH < pK_a - 1.5$

Linear range

pK_a can be quite different from the pK_a of free amino acids.
4.3.4 The effect of changes in Temp

\[k = Ae^{-E_a/RT} \]

- Generally \(E_a \) of enzyme is smaller than that of others
- Over 50°C, enzymes are denatured and lose their activity
- ‘Optimal temp’ must be avoided
- There may be more than one form of enzyme
- Enzymes working in cold condition may have no temp dependency

4.3.5 Two-substrate reactions

- Many enzymes (oxidoreductase, transferase etc.) use more than one substrate
- The same form of equation can be extended for these reactions

1. With ternary complex

\[E + A + B \rightarrow EAB \rightarrow EPQ \rightarrow E + P + Q \]
4.3.5 Two-substrate reactions

\[v = \frac{V_{\text{max}}[A][B]}{K'_A K_B + K_B[A] + K_A[B] + [A][B]} \]

\[v = \frac{V_{\text{max}}[A]}{K'_A + \frac{K_B[A]}{[B]} + K_A[A] + [A]} \]

When \([B]\) goes to infinite,

\[v = \frac{V_{\text{max}}[A]}{K_A + [A]} \]

\[\frac{1}{v} = \left[1 + \frac{K_A}{[A]} + \frac{K_B}{[B]} + \frac{K'_A K_B}{[A][B]} \right] \frac{1}{V_{\text{max}}} \]

\[\text{slope} = \frac{1}{V_{\text{max}}} \left[K_A + \frac{K'_A K_B}{[B]} \right] \]

\[y - \text{interception} = \frac{1}{V_{\text{max}}} \left[1 + \frac{K_B}{[B]} \right] \]
4.3.5 Two-substrate reactions

2. Without ternary structure

(b) Enzyme reaction in which no ternary complex is formed

\[
E + S_1 \rightleftharpoons ES_1 \rightleftharpoons E'P_1 \xrightarrow{K_{A}} E' \xrightarrow{S_2} E'S_2 \rightarrow E + P_2
\]

\[
v = \frac{V_{\text{max}}[A][B]}{K_A[A] + K_B[B] + [A][B]}
\]

\[
\frac{1}{v} = \left[1 + \frac{K_A}{[A]} + \frac{K_B}{[B]}\right] \frac{1}{V_{\text{max}}}
\]

4.3.5 Two-substrate reactions

- The data must be highly accurate to distinguish from the former to later
- Additional method is needed
 - Demonstration of partial reaction
 \[E + A \rightarrow E' + P\]
 - Isolation of \(E'\) using radioactive label
 Ex: \[E + \text{GTP}^* \rightarrow E' - \text{P}^* + \text{GDP}\]

\[E + \text{BPG} \rightarrow E - \text{P} + 2\text{BP}\]
\[E - \text{P} + 3\text{PG} \rightarrow E + \text{BPG}\]

Net rxn: \[3\text{PG} \rightarrow 2\text{PG}\] (phosphoglycerate mutase)
4.3.5 Two-substrate reactions

How to distinguish between random and ordered ternary complex mechanism?

1) Substrate binding experiments

Lactate + NAD$^+$ → pyruvate + NADH + H$^+$
Enzyme bound with NAD$^+$ were found, but not with lactate

2) Product inhibition pattern

A + B → P + Q
Enzyme is competitively inhibited by Q in random mech, while mixed-type inhibition was shown in ordered mech.

3) Isotope exchange at equilibrium

Enzyme with more than two substrates: Basically the same as two-substrate reaction with more complicated algebra

Glutamate dehydrogenase

2-Oxoglutarate + NH$_3$ + NAD(P)H → L-Glutamate + NAD(P)$^+$ + H$_2$O

Making quaternary structure in random order
4.4 Pre–Steady State Kinetics

- Pre–steady state gives us a lot of information.
- A special apparatus is needed

Stopped flow

Quench–flow

4.4 Pre–Steady State Kinetics

- In steady–state study, very limited amount of enzyme is used: Manual addition of enzyme or substrate is OK
- Faster mixing and detection required for pre–steady state kinetic study
- Stopped–flow method has dead time from input to stop of flow (1 ms)
- If there is no convenient optical method available, quench flow method is used : A lot more amount of enzyme and substrate required
4.4 Pre–Steady State Kinetics

1. Determination of rate constant

2. Identification of transient species

3. Temperature jump method

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate</th>
<th>k_1 ($s^{-1} M^{-1}$)</th>
<th>k_2 (s^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein-small ligands</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactate dehydrogenase (pig heart)</td>
<td>NADH</td>
<td>5.5×10^7</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Oxamate</td>
<td>8.1×10^6</td>
<td>17</td>
</tr>
<tr>
<td>Liver alcohol dehydrogenase</td>
<td>NADH</td>
<td>2.5×10^7</td>
<td>9</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>$(NAG)_2$</td>
<td>4×10^7</td>
<td>1×10^5</td>
</tr>
<tr>
<td>Malate</td>
<td>NADH</td>
<td>5×10^8</td>
<td>50</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>Pyruvate</td>
<td>4.5×10^6</td>
<td>2.1×10^4</td>
</tr>
<tr>
<td>Pyruvate carboxylase – Mn$^{2+}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ribonuclease</td>
<td>Uridine 3’-phosphate</td>
<td>7.8×10^7</td>
<td>1.1×10^4</td>
</tr>
<tr>
<td></td>
<td>Uridine 2’,3’-cyclic phosphate</td>
<td>1×10^7</td>
<td>2×10^4</td>
</tr>
<tr>
<td>Tyrosyl-tRNA synthetase</td>
<td>Tyrosine</td>
<td>2.4×10^6</td>
<td>24</td>
</tr>
</tbody>
</table>