THE RATIONALE FOR MATHEMATICAL MODELING

• Where to use
 – To improve understanding of the process
 – To train plant operating personnel
 – To design the control strategy for a new process
 – To select the controller setting
 – To design the control law
 – To optimize process operating conditions

• A Classification of Models
 – Theoretical models (based on physicochemical law)
 – Empirical models (based on process data analysis)
 – Semi-empirical models (combined approach)

DYNAMIC VERSUS STEADY-STATE MODEL

• Dynamic model
 – Describes time behavior of a process
 • Changes in input, disturbance, parameters, initial condition, etc.
 – Described by a set of differential equations
 : ordinary (ODE), partial (PDE), differential-algebraic (DAE)

 Initial Condition, \(x(0) \)
 Input, \(u(t) \)
 Parameter, \(p(t) \)

 Dynamic Model
 (ODE, PDE)

 Output, \(y(t) \)

• Steady-state model
 – Steady state: No further changes in all variables
 – No dependency in time: No transient behavior
 – Can be obtained by setting the time derivative term to zero

MODELING PRINCIPLES

• Conservation law
 – Within a defined system boundary (control volume)
 \[
 \begin{bmatrix}
 \text{rate of accumulation} \\
 \text{output} \\
 \text{disappearance}
 \end{bmatrix}
 = \begin{bmatrix}
 \text{rate of input} \\
 \text{rate of generation}
 \end{bmatrix}
 \]

• Mass balance (overall, components)
• Energy balance
• Momentum or force balance
• Algebraic equations: relationships between variables and parameters
MODELING APPROACHES

- **Theoretical Model**
 - Follow conservation laws
 - Based on physicochemical laws
 - Variables and parameters have physical meaning
 - Difficult to develop
 - Can become quite complex
 - Extrapolation is valid unless the physicochemical laws are invalid
 - Used for optimization and rigorous prediction of the process behavior

- **Empirical model**
 - Based on the operation data
 - Parameters may not have physical meaning
 - Easy to develop
 - Usually quite simple
 - Requires well designed experimental data
 - The behavior is correct only around the experimental condition
 - Extrapolation is usually invalid
 - Used for control design and simplified prediction model

LINEAR VERSUS NONLINEAR MODELS

- **Superposition principle**
 \(\forall \alpha, \beta \in \mathbb{R}, \) and for a linear operator, \(L \)
 \[L(\alpha x_1(t) + \beta x_2(t)) = \alpha L(x_1(t)) + \beta L(x_2(t)) \]

- **Linear dynamic model: superposition principle holds**
 \(\forall \alpha, \beta \in \mathbb{R}, \) \(u_1(t) \rightarrow y_1(t) \) and \(u_2(t) \rightarrow y_2(t) \)
 \[\alpha u_1(t) + \beta u_2(t) \rightarrow \alpha y_1(t) + \beta y_2(t) \]

- **Nonlinear: “Not linear”**
 - Usually, hard to solve and analytical solution does not exist.

DEGREE OF FREEDOM (DOF) ANALYSIS

- **DOF**
 - Number of variables that can be specified independently
 - \(N_F = N_V - N_E \)
 - \(N_F \): Degree of freedom (no. of independent variables)
 - \(N_V \): Number of variables
 - \(N_E \): Number of equations (no. of dependent variables)
 - Assume no equation can be obtained by a combination of other equations

- **Solution depending on DOF**
 - If \(N_F = 0 \), the system is exactly determined. Unique solution exists.
 - If \(N_F > 0 \), the system is underdetermined. Infinitely many solutions exist.
 - If \(N_F < 0 \), the system is overdetermined. No solutions exist.

ILLUSTRATION OF SUPERPOSITION PRINCIPLE

- **Valid only for linear process**
 - For example, if \(y(t) = u(t)^2 \),
 \((u_1(t) + 1.5u_2(t))^2 \) is not same as \(u_1(t)^2 + 1.5u_2(t)^2 \).
TYPICAL LINEAR DYNAMIC MODEL

- Linear ODE
 \[\tau \frac{dy(t)}{dt} = -y(t) + Ku(t) \quad (\tau \text{ and } K \text{ are contant, 1st order}) \]
 \[\frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \ldots + a_0 y(t) = b_n \frac{d^n u(t)}{dt^n} + b_{n-1} \frac{d^{n-1} u(t)}{dt^{n-1}} + \ldots + b_0 u(t) \quad (\text{nth order}) \]

- Nonlinear ODE
 \[\tau \frac{dy(t)}{dt} = -y(t)^2 + Ku(t) \quad \tau \frac{dy(t)}{dt} = -y(t) \sin(y) + Ku(t) \]
 \[\tau \frac{dy(t)}{dt} = -y(t) + K u(t) \quad \tau \frac{dy(t)}{dt} = e^{-y(t)} + Ku(t) \]

MODELS OF REPRESENTATIVE PROCESSES

- Liquid storage systems
 - System boundary: storage tank
 - Mass in: \(q_i \) (vol. flow, indep. var)
 - Mass out: \(q \) (vol, flow, dep. var)
 - No generation or disappearance (no reaction or leakage)
 - No energy balance
 - DOF=2 \((h, q_i) \)- 1=1
 - If \(f(h) = h/R \), the ODE is linear. \((R_V = \text{the resistance to flow})\)
 - If \(f(h) = C_i \sqrt{ghh} \), the ODE is nonlinear. \((C_V = \text{the valve constant})\)

STANDARD FORM OF MODELS

- Continuous Stirred Tank Reactor (CSTR)
 - Liquid level is constant \((\text{No acc. in tank})\)
 - Constant density, perfect mixing
 - Reaction: \(A \rightarrow B \quad (r = k_\text{exp}(E/RT)c_A) \)
 - System boundary: CSTR tank
 - Component mass balance
 \[V \frac{dc_A}{dt} = q(c_A - c_A) - V k c_A \]
 - Energy balance
 \[\frac{dT}{dt} = \frac{q}{V}(T_i - T) + \frac{q}{C_P}(-\Delta H)k c_A + \frac{UA}{C_P}(T_c - T) \]
 - DOF analysis
 - No. of variables: 6 \((q, c_A, c_A, T_i, T_c)\)
 - No. of equation: 2 \((\text{two dependent vars.}: c_A, T_i)\)
 - DOF=6-2=4
 - Independent variables: 4 \((q, c_A, T_i, T_c)\)
 - Parameters: kinetic parameters, \(V, U, A \) and other physical properties
 - Disturbances: any of \(q, c_A, T_i, T_c \) which are not manipulatable

From the previous example

\[\frac{dc_A}{dt} = \frac{q}{V}(c_A - c_A) - k c_A = f_1(c_A, T, q, c_A) \]
\[\frac{dT}{dt} = \frac{q}{V}(T_i - T) + \frac{q}{p C_P}(-\Delta H)k c_A + \frac{UA}{p C_P}(T_c - T) = f_2(c_A, T, q, T, T_c) \]

- State-spacemodel
 \[x = dx/dt = f(x, u, d) \]
 where \(x = [x_1, \ldots, x_n]^T, u = [u_1, \ldots, u_m]^T, d = [d_1, \ldots, d_l]^T \)
 - \(x \): states, \([c_A, T]^T\)
 - \(u \): inputs, \([q, T_i]^T\)
 - \(d \): disturbances, \([c_A, T_i]^T\)
 - \(y \): outputs – can be a function of above, \(y = g(x, d, u), [c_A, T]^T\)
 - If higher order derivatives exist, convert them to 1st order.
CONVERT TO 1ST-ORDER ODE

- Higher order ODE
 \[\frac{d^n x(t)}{dt^n} + a_{n-1} \frac{d^{n-1} x(t)}{dt^{n-1}} + \ldots + a_0 x(t) = b_0 u(t) \]

- Define new states
 \[x_1 = x, \; x_2 = \dot{x}, \; x_3 = \ddot{x}, \; \ldots, \; x_n = x^{(n-1)} \]

- A set of 1st-order ODE's

\[\begin{align*}
 \dot{x}_1 &= x_2 \\
 \dot{x}_2 &= x_3 \\
 &\vdots \\
 \dot{x}_n &= -a_{n-1}x_n - a_{n-2}x_{n-1} - \ldots - a_0 x_1 + b_0 u
\end{align*} \]

LINEARIZATION

- Equilibrium (Steady state)
 - Set the derivatives as zero: \(0 = f(\bar{x}, \bar{u}, \bar{d}) \)
 - Overbar denotes the steady-state value and \((\bar{x}, \bar{u}, \bar{d})\) is the equilibrium point. (could be multiple)
 - Solve them analytically or numerically using Newton method

- Linearization around equilibrium point
 - Taylor series expansion to 1st order
 \[f(x, u) = f(\bar{x}, \bar{u}) + \frac{\partial f}{\partial x}(x - \bar{x}) + \frac{\partial f}{\partial u}(u - \bar{u}) + \ldots \]
 - Ignore higher order terms
 - Define deviation variables: \(x' = x - \bar{x}, \; u' = u - \bar{u} \)

\[\begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} = A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + B u' \]

SOLUTION OF MODELS

- ODE (state-space model)
 - Linear case: find the analytical solution via Laplace transform, or other methods.
 - Nonlinear case: analytical solution usually does not exist.
 - Use a numerical integration, such as RK method, by defining initial condition, time behavior of input/disturbance
 - Linearize around the operating condition and find the analytical solution

- PDE
 - Convert to ODE by discretization of spatial variables using finite difference approximation and etc.

\[\begin{align*}
 \frac{\partial T_j}{\partial t} &= -v \frac{\partial T_j}{\partial z} + \frac{1}{\tau_M} (T_j - T_i) \\
 \frac{\partial T_i}{\partial z} &= \frac{T_i(j) - T_i(j-1)}{\Delta z} \\
 \frac{\partial T_j}{\partial z} &= \frac{T_j(j) - T_j(j-1)}{\Delta z}
\end{align*} \]