Numerical Analysis for Chemical Engineers

Taechul Lee (tclee@prosys.korea.ac.kr)

Contents

Modeling, Computers, and Error Analysis
- Mathematical Modeling and Engineering Problem-Solving
 - A Simple Mathematical Model
- Computers and Software
 - The Software Development Process
 - Algorithm Design
 - Program Composition
 - Quality Control
- Approximations and Round-Off Errors
 - Significant Figures
 - Accuracy and Precision
 - Error Definitions
- Truncation Errors and the Taylor Series
 - The Taylor Series
 - Using the Taylor Series to Estimate Truncation Errors
 - Numerical Differentiation

Roots of Equations
- Bracketing Methods
 - Graphical Methods
 - The Bisection Method
 - The False-Position Method
- Open Methods
 - Simple Fixed-point Iteration
 - The Newton-Raphson Method
 - The Secant Method
 - Multiple Roots
 - Systems of Nonlinear Equations
- Roots of Polynomials
 - Polynomials in Engineering and Science
 - Computing with Polynomials
 - Conventional Methods
 - Root Location with Libraries and Packages

Engineering Applications: Roots of Equations

Linear Algebraic and Equations
- Gauss Elimination
 - Solving Small Numbers of Equations
 - Naive Gauss Elimination
 - Pitfalls of Elimination Methods
 - Techniques for Improving Solutions
 - Complex Systems
 - Nonlinear Systems of Equations
 - Gauss-Jordan
- LU Decomposition and Matrix Inversion
 - LU Decomposition
 - The Matrix Inverse
 - Error Analysis and System Condition
- Special Matrices and Gauss-Seidel
 - Special Matrices
 - Gauss-Seidel
 - Linear Algebraic Equation with Libraries and Packages

Engineering Applications: Linear Algebraic Equations

Optimization
- One-dimensional Unconstrained Optimization
 - Golden-Section Search
 - Quadratic Interpolation
Newton's Method

- Multidimensional Unconstrained Optimization
 - Direct Methods
 - Gradient Methods
- Constrained Optimization
 - Linear Programming
 - Optimization with Packages
- Engineering Applications: Optimization

- Curve Fitting
 - Least-Squares Regression
 - Linear Regression
 - General Linear Least-Squares
 - Nonlinear Regression
 - Interpolation
 - Newton's Divided-Difference Interpolating Polynomials
 - Lagrange Interpolating Polynomial
 - Spline Interpolation
 - Fourier Approximation
 - Curve Fitting with Sinusoidal Functions
 - Fourier Integral and Transform
 - Discrete Fourier Transform (DFT)
 - Fast Fourier Transform (FFT)
 - The Power Spectrum
 - Curve Fitting with Libraries and Packages
- Engineering Applications: Curve Fitting

- Numerical Differentiation and Integration
 - Newton-Cotes Integration of Equations
 - The Trapezoidal rule
 - Simpson's rule
 - Integrations of Equations
 - Romberg integration
 - Gauss Quadrature
 - Improper integrals
 - Numerical Differentiation
 - High-accuracy differentiation formulas
 - Richardson extrapolation
 - Derivatives of unequally spaced data
 - Numerical integration/differentiation formulas with libraries and packages
- Engineering Applications: Numerical Integration and Differentiation

- Ordinary Differential Equations
 - Runge-Kutta Methods
 - Euler's Method
 - Improvement of Euler's Method
 - Runge-Kutta Method
 - Systems of Equations
 - Adaptive Runge-Kutta Method
 - Stiffness and Multistep Methods
 - Stiffness
 - Multistep Methods
 - Boundary-Value and Eigenvalue Problems
 - General Methods of Boundary-Value Problems
 - ODEs and Eigenvalues with Libraries and Packages
- Engineering Applications: Ordinary Differential Equations

- Partial Differential Equations
 - Finite Difference: Elliptic Equations
 - The Laplace Equations
 - Solution Techniques
 - Boundary Conditions
 - The Control Volume Approach
 - Finite Difference: Parabolic Equations
 - The Heat Conduction Equation
 - Explicit Methods
 - A Simple Implicit Method
 - The Crank-Nicholson Method
 - Finite Element Method
 - Calculus of variation
 - Example: The shortest distance between two points
 - The Rayleigh-Ritz Method
 - The Collocation and Galerkin Method
Finite elements for ordinary-differential equations
 Engineering Applications: Partial Differential Equations

 Using Matlab
 ● 설치
 ● Matlab 기초
 ■ 배열
 ■ Customization
 ■ Summary
 ● 제어문
 ■ if, else, and elseif
 ■ switch
 ■ while
 ■ for
 ■ break
 ■ Summary
 ● 함수 만들기
 ● Matlab에서 그림 그리기
 ■ plot 명령어
 ■ 고급 plot 명령어
 ■ 그림을 그리는 다른 명령어들
 ● 예제
 ■ Linear Equation

 Using Fortran
 ● 설치 및 사용법
 ■ MS Window에서 작동하는 툴트론
 ■ Unix 마신에서 작동하는 툴트론
 ■ Summary
 ● 데이터와 입출력
 ■ 기본적 구성
 ■ 기본적 데이터 타입
 ■ 입력과 출력에 관한
 ■ Redirection
 ■ Dimension
 ■ 데이터 초기화
 ■ Summary
 ● 제어문
 ■ STOP문
 ■ GOTO문
 ■ PAUSE문
 ■ CONTINUE문
 ■ CALL문
 ■ RETURN문
 ■ IF문
 ■ DO문
 ■ Summary
 ● 프로그램
 ■ FUNCTION
 ■ SUBROUTINE
 ■ 프로그램 컴파일
 ■ 라이브러리 만들기
 ■ EXTERNAL 문 사용하기
 ■ IMSL 사용하기

 About this document...