Converting Cellulose to Biofuels
Introduction

- **Renewable Cellulosic Biomass**’s Potential
 - Reduce dependence on **imported oil**
 - Enhance **energy security**
 - Reduce **greenhouse gas** emissions

Energy Future

- **Two major conversion approaches**
 - Biochemical Processing
 - Thermochemical Processing

20% Reduction in **oil** used for **light-duty** transportation
Thermochemical process

- Biomass
- Grinder
- Energy
- Oxygen or Air, Steam
- Ash
- Gasification Reactor
 - Biosyngas, Organics, Tar, Inorganics, Particles
- Tar Cracker
 - Oxygen
 - Biosyngas, Inorganics, Particles
- Filter
 - Particles, Inorganics
 - Syngas (CO, H₂, CO₂)
Figure 1. A typical thermochemical route to biofuel involves gasification of biomass to syngas followed by catalytic Fischer-Tropsch (FT) conversion to biodiesel. Source®17)
Figure 2. Bioprocessing of lignocellulose to ethanol involves pretreatment, hydrolysis, fermentation and separation. Source; (17).
To achieve economical processes,
Key Factors are
Catalyst Robustness And Costs
Feedstock availability and composition

• **Supply of feedstock** for use in biorefineries
 - **Low density of biomass**, **transportation costs** are high, such that **40-50 miles** is the maximum distance considered economically **feasible for biomass transport**
Pretreatment required to maximize ethanol yield: Various pretreatments (acids, bases, water, steam, heat in some combination).
Table 1. Compositions of different types of cellulosic biomass and the Maximum ethanol yields possible for each of the compositions.

<table>
<thead>
<tr>
<th>Feedstock Composition</th>
<th>Poplar</th>
<th>Red Maple</th>
<th>Corn Stover</th>
<th>Switchgrass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>43.8%</td>
<td>41.0%</td>
<td>34.6%</td>
<td>33.2%</td>
</tr>
<tr>
<td>Xylen</td>
<td>14.9%</td>
<td>15.0%</td>
<td>18.3%</td>
<td>21.0%</td>
</tr>
<tr>
<td>Arabinan, Mannan, Galactan</td>
<td>5.6%</td>
<td>0.0%</td>
<td>2.5%</td>
<td>3.2%</td>
</tr>
<tr>
<td>Acetyl</td>
<td>3.6%</td>
<td>4.7%</td>
<td>Not Available</td>
<td>2.5%</td>
</tr>
<tr>
<td>Extractives</td>
<td>3.6%</td>
<td>3.0%</td>
<td>10.8%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Protein</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>5.7%</td>
</tr>
<tr>
<td>Lignin</td>
<td>29.1%</td>
<td>29.1%</td>
<td>17.7%</td>
<td>17.9%</td>
</tr>
<tr>
<td>Ash</td>
<td>1.1%</td>
<td>1.0%</td>
<td>10.2%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Total</td>
<td>101.7%</td>
<td>93.8%</td>
<td>94.1%</td>
<td>97.4%</td>
</tr>
</tbody>
</table>

Estimated Maximum Ethanol Yield, gal/dry ton biomass: 111, 97, 95, 99

Theoretical maximum yield (per short ton), assuming 100% hydrolysis and 100% fermentation

Data from Laboratory of Renewable Resources Engineering, Perdue Univ.
Biochemical processing

- The processing of cellulosic biomass requires five steps, as illustrated in Fig 3.
 1. Feedstock preparation
 2. Pretreatment
 3. Hydrolysis
 4. Fermentation
 5. Distillation

Fig 3. The basic unit operations in a biorefinery.
Consolidated bioprocessing (CBP)

- Feedstock Supply
- Pretreatment
- Consolidated Bioprocessing (CBP)
- Distillation And Storage

Fig 4. Consolidated bioprocessing combines hydrolysis and fermentation in a single vessel using a microorganism genetically engineered specifically for these dual purposes.
Microorganisms for ethanol fermentation

Saccharomyces is a genus in the kingdom of fungi that includes many species of yeast. Many members of this genus are considered very important in food production. One example is *Saccharomyces cerevisiae*, which is used in making wine, bread, and beer. Other members of this genus include *Saccharomyces bayanus*, used in making wine, and *Saccharomyces boulardii*, used in medicine.

Why?
- Produce ethanol at **high concentrations**
- Perform **reliably in commercial** starch-to-ethanol facilities
- Glucose into ethanol under **anaerobic conditions** (Embden-Meyerhof pathway)
- Making **CO₂** as a byproduct

Characteristics
- Tolerant of **inhavitors and products**
- **Consume** a wide range of **substrates** (both hexose and pentose sugars)
- High productivity to result in **high yield**
Fermentation inhibitors

- The major inhibitors present in biomass hydrolysates
 - Weak acids
 - Furan derivatives (Furfural and 5-hydroxymethylfurural)
 - Result from the degradation of the sugars found in the hemicellulose and cellulose fractions during processing
 - Phenolic
- Effects
 - Negatively affect product yield
 - Negatively Volumetric productivity (grams of product per liter per hour)

Enzyme inhibitors

- Constitue a major cost in the bioconversion of cellulose to ethanol
 - Nonproductive adsorption of enzyme onto lignocellulosic substrates prior to reaction
 - Intermediate and end-product inhibition
 - Mass-transfer limitations affecting the transport of the enzyme to and from insoluble substrates
 - The distribution of lignin in the cell wall
 - The presence of hemicellulose, phenolic compounds, proteins and fats
 - Lignocellulose particle size
 - And crystallinity and degree of polymerization of the cellulose substrate
Summary

- Ethanol is produced in large quantities, and an estimate 12 billion gal will be derived from corn in 2010.
- Since the cellulosic portion of the corn kernel is a potential source of an advanced biofuels as well Cellulosic ethanol is likely to be the first such fuel on the market.
- The technologies to process wood and other lignocellulosic feedstocks currently under development will enable the rapid expansion of cellulosic ethanol production from non-food feedstocks and lead the way for other advanced biofuels over the next ten years.