System Modeling and Identification

CHBE 702
Korea University
Prof. Dae Ryook Yang
Course Description

• **Emphases**
 – Delivering concepts and Practice
 – Programming Identification Methods using Matlab

• **Class web site**

• **Textbook**

• **References**
System Modeling and Identification

Lecture Note #1
(Chap.1 – Chap.3)

CHBE 702
Korea University
Prof. Dae Ryook Yang
Chap. 1 Introduction

• **Decision making/Problem Solving**
 - Dependent on access to adequate information about the problem to be solved

• **Form of available information**
 - Data or observations
 - Interpretation is required for further analysis

• **System identification**
 - The derivation of a relevant system description from observed data

• **Model**
 - The resultant system description from system identification
• **Classification of Models**
 - Qualitative/Quantitative
 - Time domain/Frequency domain models
 - Deterministic/Stochastic models
 - SISO/MIMO models
 - Continuous/Discrete-time models
 - Static/Dynamic
 - Black-box/Gray-box/White-box models
 - Parametric/Nonparametric models
 - Linear/Nonlinear models

• **Purposes of the model**
 - Prediction: future system behavior
 - Learning new rules: account for different situations
 - Data compression: compact form and low complexity
• **Procedure of Identification**

 - A System to study
 - Purpose and problem formulation
 - Experimental planning and operation to ensure that the prerequisites of the identification methods are used in the experimental procedure
 - A model set
 - Identification and parameter estimation methods
 - Model validation
Basics of Statistics

• Basic knowledge on statistics
 – Choose any undergraduate level statistics course.
 – Get to know the basic concepts.
 – Other materials will be provided.
Chap. 2 Black Box Models

- **Black box models**

 - Impulse response model, $g(t)$

 $$y(t) = \int_0^t g(\tau)u(t-\tau)d\tau$$

 For impulse input, $u(t) = \delta(t) \rightarrow y(t) = g(t)$

 - Frequency response model

 $$Y(s) = G(s)U(s)$$

 where $Y(s) = \mathcal{L}\{y(t)\}$, $G(s) = \mathcal{L}\{g(t)\}$, $U(s) = \mathcal{L}\{u(t)\}$
Difficulties in Time Domain Analysis (1)

- Impulse response analysis

\[g_1(t) = 1.05 \cdot 0.41' \]
\[g_2(t) = 1.2 \cdot 0.5' - 0.2 \cdot 0.75' \]

- FIR’s look very close.
- FSR’s are different
- Low freq. information (gain) is hard to get.
Difficulties in Time Domain Analysis (2)

• Impulse response analysis

\[g_1(t) = 0.7^t - 0.1^t \]
\[g_2(t) = 0.8 \cdot 0.73^t \]

- At the sampling times, FIR’s look very close.
- FSR’s are quite different.
Practical Problems of Impulse Response Analysis

- Restriction to stable systems
- Difficulties in generating impulses
- Dynamic sample and hold elements
- Synchronization between impulse and sampling
- Difficulties for the system in managing inputs of large magnitude
- Saturations
- Nonlinearities
- Difficulties in handling the tails of responses due to their long duration and low amplitudes
- Sensitivity to noise
Difficulties in Time Domain Analysis (3)

• Step response analysis

\[u(t) = \begin{cases}
1, & t > 0 \\
0, & t \leq 0
\end{cases} \quad y(t) = \int_{0}^{t} g(\tau)d\tau \]

– A good estimate of static gain can be obtained.
– FIR can be obtained by differentiating step response.

\[\hat{g}(t) = \frac{d}{dt} y(t) \]

– The noise will affect the accuracy of the model.
– Proper filtering will improve the accuracy.
Frequency Response Analysis

- For sinusoidal input, \(u(t) = u_1 \sin \omega t \),
 \[
y(t) = |G(i\omega)| u_1 \sin(\omega t + \phi(\omega)); \quad \phi(\omega) = \arg G(i\omega)
 \]

- Signal probing
 \[
s_T(\omega) = \int_0^T y(t) \sin \omega t \, dt = \frac{1}{2} T |G(i\omega)| u_1 \cos \phi(\omega); \quad T = kh = \frac{2\pi}{\omega} k
 \]
 \[
c_T(\omega) = \int_0^T y(t) \cos \omega t \, dt = \frac{1}{2} T |G(i\omega)| u_1 \sin \phi(\omega)
 \]
 \[
 \left| \hat{G}(i\omega) \right| = \frac{2}{Tu_1} \sqrt{s_T^2(\omega) + c_T^2(\omega)}
 \]
 \[
 \hat{\phi}(i\omega) = \arctan \frac{c_T(\omega)}{s_T(\omega)} + k\pi
 \]
Difficulties in Frequency Domain Analysis (1)

- Process with sinusoidal disturbance

\[Y(s) = G(s)U(s) + V(s) \]

- The disturbance \(v(t) \) is with period 10Hz (62.8 rad/s).
- If the test is corrupted by noise, the frequency response may be modified significantly by noise.
- The disturbance affects both the gain and phase over a large freq interval.
Difficulties in Frequency Domain Analysis (2)

- **Sampling interference**

 \[G(s) = \frac{1}{s+1} \]

 - From the input/output data, the discrete-time method can generate the frequency response. (FFT, DFT, etc.)
 - If the sampling frequency is 10Hz, the frequency response has significant error in the freq range above the 1Hz.
Practical Problems of Frequency Response Analysis

- Disturbances acting on output
- Sampling interference
- Unmodeled nonlinearities
- Presence of higher-order harmonics
- Only the sinusoidal input can be applied
- One experiment is needed for each test frequency
- Long measurement time is required
- Restricted to stable systems
- Restricted to time-invariant systems
- Transient response should be discarded
Chap. 3 Signals and Systems

- **Laplace transform**
 \[X(s) = \mathcal{L}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-st} \, dt; \quad s = \sigma + i\omega \text{ (complex freq.)} \]
 - Valuable for analysis of transient behavior
 - One-sided LT: \[X(s) = \mathcal{L}[x(t)] = \int_{0}^{\infty} x(t)e^{-st} \, dt \]

- **Fourier transform (spectrum of } x(t))**
 \[X(i\omega) = \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t)e^{-i\omega t} \, dt; \]
 - Valuable for periodic signals
 - LT and FT coincide for the choice \[s = i\omega. \]
Discretized Data

- **Sampled signal**
 - Sampling period: \(h \)
 - Sample sequence: \(\{ x_k \}_{-\infty}^{\infty} ; \ x_k = x(kh) \) for \(k = \ldots, -1, 0, 1, 2, \ldots \)
 - Sampled function The average of \(x(t) \) and \(x_\Delta(t) \) to be same
 \[
 x_\Delta(t) = x(t)h \sum_{k=-\infty}^{\infty} \delta(t - kh) = x(t)W_h(t); \ W_h(t) \triangleq h \sum_{k=-\infty}^{\infty} \delta(t - kh)
 \]
 - Spectrum of sampled signal
 \[
 X_\Delta(i\omega) = \mathfrak{F}[x_\Delta(t)] = \mathfrak{F}[x(t)] \otimes \mathfrak{F}[W_k(t)] \quad (\otimes \text{ is convolution})
 \]
 \[
 X_\Delta(i\omega) = \sum_{k=-\infty}^{\infty} X \left(i(\omega - 2\pi k / h) \right) \quad \text{since} \quad \mathfrak{F}[W_k(t)] = (h / 2\pi)W_{2\pi/h}(\omega)
 \]
 \((X_\Delta(i\omega) \) is a periodic function of the original spectrum \(X(i\omega) \))
The Shannon’s Sampling Theorem

- The continuous-time variable $x(t)$ may be reconstructed from the samples if and only if the sampling frequency is at least twice that of the highest frequency for which $X(i\omega)$ is non zero.

- The sampling frequency: ω_s
- The Nyquist frequency: $\omega_n = \omega_s / 2$
- The Nyquist frequency indicates the upper limit of distortion-free sampling.

A variable cannot be sampled in a finite measurement interval without spectral distortion arising. (spectral leakage)
The Discrete-time Transforms

- **Definition of Z-transform**
 \[X_z(z) = Z[x(t)] = \sum_{k=-\infty}^{\infty} x_k z^{-k} \]

- Z-transform exists only if \(\sum_{k=-\infty}^{\infty} |x_k||z^{-k}| < \infty \)

- \(X_{\Delta}(i\omega) = \mathcal{F}[x(t)W_h(t)] = h \sum_{k=-\infty}^{\infty} x_k \exp(-i\omega kh) = hX_z(e^{i\omega h}) \)

- **Discrete Fourier transform (DFT)**
 - \(N \) measurements with sampling time \(h \)
 \[X_k = \mathcal{F}_{\Delta(h,N)}[x(kh)] = h \sum_{l=0}^{N-1} x_l \exp(-i\omega_k lh) = hX_z(e^{i\omega_k h}) \]

where \(\omega_k = (2\pi / Nh)k \) for \(k = 0, 2, \cdots, N - 1 \)
Signal power and Energy

- Instantaneous power of signal x at time t
 $$p_{xx}(t) = x(t) \cdot x^*(t) \quad (* \text{ is complex conjugate transpose})$$

- Instantaneous power of interaction between x and y
 $$p_{xy}(t) = x(t) \cdot y^*(t) = p_{yx}^*(t)$$

- Energy of a signal
 $$e_{xx} = \int_{-\infty}^{+\infty} x(t) \cdot x^*(t) dt$$

- Interaction energy between x and y
 $$e_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) \cdot y^*(t-\tau) dt = e_{yx}^*(-\tau)$$

- Cross covariance
 $$C_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} x(t) \cdot y^*(t-\tau) dt$$
Spectra and Covariance Functions

- Spectral density (energy spectrum)
 \[E_{xx}(i\omega) = X(i\omega) \cdot X^*(i\omega) \]

- Cross energy spectrum between \(x \) and \(y \)
 \[E_{xy}(i\omega) = X(i\omega) \cdot Y^*(i\omega) \]
 - Parseval relations (Signal energies are same in both domains)
 \[\int_{-\infty}^{+\infty} x(t) \cdot y^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(i\omega) \cdot Y^*(i\omega) d\omega \]

- Autospectrum
 \[S_{xx}(i\omega) = \mathcal{F} \left[C_{xx}(\tau) \right] \]

- Power cross spectrum
 \[S_{xy}(i\omega) = \mathcal{F} \left[C_{xy}(\tau) \right] \]
• Power cross spectra from linear systems

 - The process: \(y(t) = x(t) + v(t) = g(t) * u(t) + v(t) \)

 \[
 S_{yy}(i\omega) = G(i\omega)S_{uu}(i\omega)
 \]

 \[
 S_{uy}(i\omega) = S_{uu}(i\omega)G^*(i\omega)
 \]

 \[
 S_{yy}(i\omega) = G(i\omega)S_{uu}(i\omega)G^*(i\omega) + S_{vv}(i\omega)
 \]

 \[e_{xy} = 0 \]

 - The signal-to-noise ratio (SNR): \(x \) and \(v \) are uncorrelated

 \[
 \text{SNR} = \frac{e_{xx}}{e_{vv}} = \frac{e_{yy}}{e_{vv}} - 1
 \]

 - Correlation coefficient/Quadratic coherence spectrum

 \[
 \rho(\tau) = \frac{C_{xy}(\tau)}{\sqrt{|C_{xx}(\tau)|} \sqrt{|C_{yy}(\tau)|}}
 \]

 \[
 \gamma_{xy}^2(\omega) = \frac{|S_{xy}(i\omega)|^2}{S_{xx}(i\omega)S_{yy}(i\omega)}
 \]
• Coherent function expresses the degree of linear correlation in the frequency domain between the input and output

\[
\gamma_{uy}^2(\omega) = \frac{|S_{uy}(i\omega)|^2}{S_{uu}(i\omega)S_{yy}(i\omega)} = \frac{|G(i\omega)|^2 S_{uu}^2(i\omega)}{S_{uu}(i\omega)(|G(i\omega)|^2 S_{uu}(i\omega) + S_{vv}(i\omega))}
\]

\[
= \frac{1}{1 + \frac{S_{vv}(i\omega)}{S_{uu}(i\omega)|G(i\omega)|^2}}
\]

– If coherent function is close to unity, it implies that
 • the noise level is low and
 • there is a linear response of \(y(t)=g(t)\ast u(t)+v(t)\) between input and output.
Random variable (stochastic variable), X
- Has a value which is independent on chance
- Cannot be predicted from a knowledge of the experimental conditions

Probability that $X \leq x$
$$F(x) = P\{X \leq x\}, \quad 0 \leq F(x) \leq 1, \quad \forall x \in R$$

Probability density function
$$f(x) = \frac{dF(x)}{dx}$$

α-percentile of the distribution
$$P\{X \leq x_\alpha\} = \alpha$$

The mean (expectation) of the distribution
$$\mu_x = E\{x\} = \int_{-\infty}^{\infty} xf(x)dx$$
• **The variance**

\[\text{Var}\{x\} = E\{(x - \mu_x)(x - \mu_x)^T\} = \int_{-\infty}^{\infty} (x - \mu_x)(x - \mu_x)^T f(x)dx = \sigma_x^2 \]

• **The mean of variable** \(y \) **which is a function of** \(X \)

\[\mu_y = E\{y\} = \int_{-\infty}^{\infty} y(x) f(x)dx \]

• **The covariance between** \(x \) **and** \(y \)

\[\text{Cov}\{x, y\} = E\{(x - \mu_x)(y - \mu_y)^T\} = \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y)^T f(x)dx \]

\[= E\{xy^T\} - \mu_x\mu_y^T \]

• **Statistically independent variables**

\[f(x, y) = f_1(x)f_2(y) \]

• **Statistical covariance and correlation coefficient**

\[\rho = \text{Cov}\{x, y\} / (\sigma_x \sigma_y) \quad (x \text{ and } y \text{ are uncorrelated if } \text{Cov}\{x, y\} = 0) \]

• **The** \(p \)-**th moment**

\[E\{x^p\} = \int_{-\infty}^{\infty} x^p f(x)dx \]
• **The normal or Gaussian distribution for** $x \in \mathbb{R}^N$

$$f_x(x) = \frac{1}{(2\pi)^{N/2}(\text{det } R)^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu_x)^T R^{-1} (x - \mu_x) \right\}$$

$$\mu_x = E\{x\} = \begin{pmatrix} E\{x_1\} \\ \vdots \\ E\{x_N\} \end{pmatrix} \quad R = \text{Cov}\{x, x\} = \begin{pmatrix} \text{Cov}\{x_1, x_1\} & \cdots & \text{Cov}\{x_1, x_N\} \\ \vdots & \ddots & \vdots \\ \text{Cov}\{x_N, x_1\} & \cdots & \text{Cov}\{x_N, x_N\} \end{pmatrix}$$

• **Linear transformations**

 – For $y = Ax + b$ ($x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$)

$$E\{y\} = AE\{x\} + b = A\mu_x + b$$

$$\text{Cov}\{y, y\} = E\{(Ax + b - (A\mu_x + b))(Ax + b - (A\mu_x + b))^T\} + b$$

$$= ACov\{x, x\}A^T \geq 0$$
• **Time series**
 - A function \(x(t) = x(t,w) \) whose values depend on a random variable \(w \) is called a **random or stochastic process**. (This function is also a r.v.)
 - For a fixed \(w \), \(x(t,w) \) is only a function of \(t \) and is called a **realization of the stochastic process** or **sample function**.
 - In discrete time, infinite sequence of \(\{x_k\} \ (k=1,\ldots,\infty) \) or a sequence \(\{x_k\} \ (k=1,\ldots,N) \) over some interval of time is called **time series**.

• **White noise**
 - A sequence of \(N \) uncorrelated stochastic variable \(\{w_i\} \ (k=1,\ldots,N) \) with \(\text{E}\{w_i\}=0 \), \(\text{E}\{w_i,w_j\}=\delta_{ij}\sigma^2 \) for all \(i,j \) is known as **white noise** in the domain of time-series analysis.

• **Stationary Processes**
 - A random process \(x(t,w) \) is called **weakly stationary** if its expectation \(\mu_x(t)=\text{E}\{x(t,w)\} \) is constant and independent of time \(t \) and if the covariance functions \(C_{xx}\{t_1, t_2\}=\text{Cov}\{x(t_1), x(t_2)\} \) depends only on time shift \(\tau=t_1-t_2 \).
 - A stochastic process \(x(t,w) \) is called **strictly stationary** if the joint probability distribution of some set of \(N \) observations \(x_1, x_2, \ldots, x_N \) is the same as that associated with the \(N \) observations \(x_1+k, x_2+k, \ldots, x_N+k \) for any \(k \).
 - Two stochastic processes \(\{x_k\} \) and \(\{y_k\} \) are uncorrelated if and only if cross covariance function \(C_{xy}\{\tau\}=0 \) for all \(\tau \).