MODEL PREDICTIVE CONTROL

Professor Dae Ryook Yang

Spring 2020
Dept. of Chemical and Biological Engineering
Korea University

* Some parts are from Jay H. Lee’s lecture notes
What is Model Predictive Control (MPC)?

- **Multivariable control**
 - Calculate all the MV’s at the same time based on all PV values
 - Not like multiloop control, no decoupling scheme is needed
 - More complicated

- **Constraints handling**
 - Process industry requires many constraints
 - Safety
 - Operational limitations
 - Product quality
 - No previous methodology handles constraints explicitly

- **Flexible formulation**
 - Many control objectives can be formulated as the objective function and constraints
• Features
 – Computer control: sampled-data control
 – Model-based control: dynamic model is required
 • Fundamental model
 • Empirical model (usually step response based)
 – Predictive: adjust process based on the future prediction
 • Not just based on the current error
 – Optimization-based: no explicit control law
 • Formulated with objective function and constraints
 • Optimization is solved at each sampling time
 – Integrated: constraints and economic handling
 • Optimizing control
 • Servo or regulatory control
 – Receding horizon control: future window is moving forward
 • Repeat the prediction and optimization at each sample time
 • Update the input based on the new measurement
• Similarity to human decision-making
 – **Sense**: collect new information
 – **Assess**: update the memories
 – **Predict**: forecast the outcome for a variety of possible decisions
 – **Optimize**: determine the best decision for given objective and constraints
 – **Implement**: the action for this time is imposed
 – **Repeat**: information collection, update and optimization done every so often
Exemplary Algorithm

\[
\begin{align*}
\min_{u_t()} & \int_t^{t+p} l_1[\text{Error}(\tau)] + l_2[\text{Input}(\tau)]d\tau \\
U(\cdot) & \in U, \quad Y_t(\cdot) \in Y
\end{align*}
\]

- Objective function
- Constraints
Model Predictive Control Originated in 1980

• **Techniques developed by industry:**
 - Dynamic Matrix Control (DMC)
 • Shell Development Co., Cutler and Ramaker (1980)
 • Cutler later formed DMC, Inc.
 • DMC acquired by Aspentech in 1997
 - Model Algorithmic Control (MAC)
 • ADERSA/GERBIOS, Richalet *et al* (1978)

• **Over 4500 applications of MPC by the end of 1999 since 1980** (Qin and Badgwell, 2003)
• Predominantly in the oil and petrochemical industries but the range of applications is expanding.
• Models used are predominantly empirical models developed through plant testing.
• Technology is used not only for multivariable control, but for most economic operation within constraint boundaries.
Reason for Popularity (1)

- **MPC provides a systematic, consistent, and integrated solution to process control problems with complex features:**
 - Delays, inverse responses and other complex dynamics.
 - Strong interactions (e.g., large RGA)
 - Constraints (e.g., actuator limits, output limits)
• Example 1: Blending control system

![Diagram of Blending System Model]

- Control r_A and r_B.
- Control q if possible.
- Flowrates of additives are limited.

MPC:
Solve at each time k

p = Size of prediction window

$$\begin{align*}
\min_{u_1(j), u_2(j), u_3(j)} & \sum_{i=1}^{p} (r_A(k+i | k) - r_A^*)^2 \\
& + (r_B(k+i | k) - r_B^*)^2 \\
& + \gamma(q(k+i | k) - q^*)^2
\end{align*}$$

$$(u_i)_{\min} \leq u_i(j) \leq (u_i)_{\max}, i = 1, \ldots, 3,$$
$$\gamma \ll 1$$
• Example 2: Heavy Oil Fractionator

- Keep $y_7 \geq T_{\text{min}}$
- Control the two compositions y_1 and y_2
- Minimize u_3 to maximize the heat recovery.

Solution using the classical tools will be very complicated and a satisfactory solution is not known.

It is fairly easy to translate the above objective (as well as the valve limits) as a minimization function and inequality constraints as required by MPC.
Advantages of MPC over Traditional APC

- Integrated solution
 - automatic constraint handling
 - Feedforward/feedback
 - No need for decoupling or delay compensation

- Efficient Utilization of degrees of freedom
 - Can handle nonsquare systems (e.g., more MVs and CVs)
 - Assignable priorities, ideal settling values for MVs

- Consistent, systematic methodology

- Realized benefits
 - Higher on-line times
 - Cheaper implementation
 - Easier maintenance
Reason for Popularity (2)

- **Emerging popularity of on-line optimization**
- **Process optimization and control are often conflicting objectives**
 - Optimization pushes the process to the boundary of constraints.
 - Quality of control determines how close one can push the process to the boundary.
- **Implications for process control**
 - High performance control is needed to realize on-line optimization.
 - Constraint handling is a must.
 - The appropriate tradeoff between optimization and control is time-varying and is best handled within a single framework.
• Synergy Between Optimization and Control
• **Control Hierarchy**
 - Regulatory and basic control
 - PID control loops, cascade loops, independent actuators, etc.
 - The set point of each loop are given by advanced control
 - Fast sampling time and response (seconds or less)
 - Advanced control
 - Such as MPC
 - Manipulates the set points of the regulatory and basic controls
 - Higher-level set points are given by the plant-wide optimizer
 - Sampling time (seconds to minutes)
 - Plant-wide optimization
 - Calculate the optimum steady-states operating conditions based on the strategy from CIM
 - Sampling time (hours)
 - CIM (Computer Integrated Manufacturing)
 - Reflect corporate strategy and market condition
 - Production schedule
 - Sampling time (months)
• Return on Investment (ROI) for APC
Importance of Modeling

• Almost all models used in MPC are typically empirical models “identified” through plant tests rather than first-principles models.
 – Step responses, pulse responses from plant tests.
 – Transfer function models fitted to plant test data.

• Up to 80% of time and expense involved in designing and installing a MPC is attributed to modeling/system identification. → should be improved.

• Keep in mind that obtained models are imperfect (both in terms of structure and parameters).
 – Importance of feedback update of the model.
 – Penalize excessive input movements.
• Design effort

Traditional Control:
- Design and Tuning of Controller
 - Process Analysis

MPC:
- Modeling and Identification
 - Control Specification
Challenges

• Efficient identification of control-relevant model

• Managing the sometimes exorbitant on-line computational load
 – Nonlinear models \rightarrow Nonlinear Programs (NLP)
 – Hybrid system models (continuous dynamics + discrete events or switches, e.g., pressure swing adsorption) \rightarrow Mixed Integer Programs (MINLP)
 – Difficult to solve these reliably on-line for large-scale problems.

• How do we design model, estimator (of model parameters and state), and optimization algorithm as an integrated system - that are simultaneously optimized - rather than disparate components?

• Long-term maintenance of control system.
Current Status on MPC

- MPC is the established advanced multivariable control technique for the process industry. It is already an indispensable tool and its importance is continuing to grow.
- It can be formulated to perform some economic optimization and can also be interfaced with a larger-scale (e.g., plant-wide) optimization scheme.
- Obtaining an accurate model and having reliable sensors for key parameters are key bottlenecks.
- A number of challenges remain to improve its use and performance.
Process Models

• **Transfer function models**
 - Fixed order and structure
 - Parametric: few parameters to identify
 - Need very high order model for unusual behavior

• **Convolution models**
 - Continuous form
 \[y(t) = \int_0^t h(\tau)u(t - \tau)\,d\tau \]
 - Discrete form
 \[y(k) = \sum_{i=0}^{k} h(i)u(k - i) \]
 - Many parameters, but easily obtained from the step or impulse response
Step Response Model

- **From open-loop step test**
 - Sampling time: Δt
 - Step response coefficients: a_i
 - Read the values of the unit step response

- **FSR model**
 - Finite step response (FSR)
 \[y_k = a_k \left(u_k = 1, \forall k \geq 0 \right) \]
 - Using superposition principle for arbitrary input changes
 \[u_k = \Delta u_0 + \Delta u_1 + \cdots + \Delta u_k \text{ where } \Delta u_i = u_i - u_{i-1} \]
 \[y_k = y_0 + y_k \bigg|_{\Delta u_0} + y_k \bigg|_{\Delta u_1} + \cdots + y_k \bigg|_{\Delta u_{k-1}} = y_0 + a_k \Delta u_0 + a_{k-1} \Delta u_1 + \cdots + a_1 \Delta u_{k-1} \]
• **After** $t = T\Delta t$, the step response reaches steady state at least 99%

\[y_1 = y_0 + a_1 \Delta u_0 \]
\[y_2 = y_0 + a_2 \Delta u_0 + a_1 \Delta u_1 \]
\[y_3 = y_0 + a_3 \Delta u_0 + a_2 \Delta u_1 + a_1 \Delta u_2 \]
\[\vdots \]
\[y_T = y_0 + a_T \Delta u_0 + a_{T-1} \Delta u_1 + \cdots + a_2 \Delta u_{T-2} + a_1 \Delta u_{T-1} \]
\[y_{T+1} = y_0 + a_T \Delta u_0 + a_T \Delta u_1 + a_{T-1} \Delta u_2 + \cdots + a_2 \Delta u_{T-1} + a_1 \Delta u_T \]
\[y_{T+2} = y_0 + a_T \Delta u_0 + a_T \Delta u_1 + a_T \Delta u_2 + a_{T-1} \Delta u_3 + \cdots + a_2 \Delta u_T + a_1 \Delta u_{T+1} \]
\[\vdots \]
\[\Rightarrow y_n = y_0 + \sum_{i=1}^{n} a_i \Delta u_{n-i} \quad (a_i = a_T, \forall i \geq T) \]

(FSR Model)

– If there is a delay, the FSR coefficients during the delay will be zero.
Impulse Response Model

• Impulse response coefficients

\[h_i = a_i - a_{i-1} \quad (i = 1, 2, \ldots, T) \]

\[h_0 = 0 \]

\[y_n = y_0 + \sum_{i=1}^{T} a_i \Delta u_{n-i} = y_0 + \sum_{i=1}^{T} a_i (u_{n-i} - u_{n-i-1}) \]

\[= y_0 + (a_1 u_{n-1} - a_1 u_{n-2}) + (a_2 u_{n-2} - a_2 u_{n-3}) + \cdots + (a_n u_1 - a_n u_0) + (a_n u_0 - a_n u_{-1}) + \cdots \]

\[= y_0 + a_1 u_{n-1} + (a_2 - a_1) u_{n-2} + \cdots + (a_n - a_{n-1}) u_1 + (a_n - a_{n-1}) u_0 + \cdots \]

\[= y_0 + (a_1 - a_0^0) u_{n-1} + (a_2 - a_1) u_{n-2} + \cdots + (a_n - a_{n-1}) u_1 \]

\[\Rightarrow y_n = y_0 + \sum_{i=1}^{T} h_i u_{n-i} \quad (h_i = 0, \forall i \geq T) \]

(FIR Model)
Matrix Form of the Predictive Model

• **Horizons**
 - Model horizon: T (number of model coefficients)
 - Control horizon: U (number of control moves)
 - Prediction horizon: V (number of predictions in the future)

\[
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 \vdots \\
 y_V \\
\end{bmatrix} =
\begin{bmatrix}
 a_1 & 0 & 0 & \cdots & 0 \\
 a_2 & a_1 & 0 & \cdots & 0 \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 a_V & a_{V-1} & a_{V-2} & \cdots & a_{V-U+1} \\
\end{bmatrix}
\begin{bmatrix}
 \Delta u_0 \\
 \Delta u_1 \\
 \Delta u_2 \\
 \vdots \\
 \Delta u_{U-1} \\
\end{bmatrix}
\]

\[y = A \Delta u\]

- **A**: Dynamic matrix
Single-Step Prediction

• From the FIR model

\[\hat{y}_n = y_0 + \sum_{i=1}^{T} h_i u_{n-i} \quad \hat{y}_{n+1} = y_0 + \sum_{i=1}^{T} h_i u_{n+1-i} \]

\[\Rightarrow \hat{y}_{n+1} = \hat{y}_n + \sum_{i=1}^{T} h_i \Delta u_{n+1-i} \] (Recursive prediction)

• Corrected prediction based on the measurement

 Assume the error between the model prediction and the measurement will present in the future with same magnitude

\[y_{n+1}^* - \hat{y}_{n+1} = y_n - \hat{y}_n \quad (y_n \text{ is the current measurement}) \]

\[\Rightarrow y_{n+1}^* = \hat{y}_{n+1} + (y_n - \hat{y}_n) = y_n + \sum_{i=1}^{T} h_i \Delta u_{n+1-i} \]
Multi-Step Prediction

- From the single-step prediction (j-step prediction)

$$\hat{y}_{n+j} = \hat{y}_{n+j-1} + \sum_{i=1}^{T} h_i \Delta u_{n+j-i} \quad (j = 1, 2, \cdots, V)$$

$$y_{n+j}^* - \hat{y}_{n+j} = y_{n+j-1}^* - \hat{y}_{n+j-1} \quad (y_{n+j-1}^* \text{ is not available if } j>1)$$

$$\Rightarrow y_{n+j}^* = y_{n+j-1}^* + \sum_{i=1}^{T} h_i \Delta u_{n+j-i} \quad (j = 1, 2, \cdots, V)$$

- Matrix form when $V \geq U$

$$\begin{bmatrix}
y_{n+1}^* \\
y_{n+2}^* \\
y_{n+3}^* \\
\vdots \\
y_{n+V}^*
\end{bmatrix} =
\begin{bmatrix}
a_1 & 0 & 0 & \cdots & 0 \\
a_2 & a_1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_V & a_{V-1} & a_{V-2} & \cdots & a_{V-U+1}
\end{bmatrix}
\begin{bmatrix}
\Delta u_n \\
\Delta u_{n+1} \\
\Delta u_{n+2} \\
\vdots \\
\Delta u_{n+U-1}
\end{bmatrix}
+ \begin{bmatrix}
y_n + P_1 \\
y_n + P_2 \\
y_n + P_3 \\
\vdots \\
y_n + P_V
\end{bmatrix}$$

Dynamic Matrix, A
where

\[P_i = \sum_{j=1}^{i} S_j \ (i = 1, 2, \ldots, V) \]

\[S_j = \sum_{l=1}^{T} h_{l} \Delta u_{n+j-l} \ (i = 1, 2, \ldots, V) \]

- \(S_j \): the incremental effect of the past (previously implemented) movements of input on the \((n+j)\)-th future output prediction (where \(n\) is current time)
- \(P_i \): the projection which includes future prediction of \(y\) based on all previously implemented input changes.
- \(P_i \) and \(S_j \) depend only on past input changes.

- If the past information is known, then the future input changes will affect the future outputs and the future outputs can be adjusted by carefully selecting the future inputs.
Currently, n is current time and y_n is measured.

\[
y_{n+1}^* = y_n + \sum_{i=1}^{T} h_i \Delta u_{n+1-i} = h_2 \Delta u_n + y_n + \sum_{i=2}^{T} h_i \Delta u_{n+1-i} = a_1 \Delta u_n + y_n + \sum_{i=2}^{T} h_i \Delta u_{n+1-i}
\]

\[
y_{n+2}^* = y_{n+1}^* + \sum_{i=1}^{T} h_i \Delta u_{n+2-i} = (h_2 + h_1) \Delta u_n + h_1 \Delta u_{n+1} + \sum_{i=3}^{T} h_i \Delta u_{n+2-i} + y_n + \sum_{i=2}^{T} h_i \Delta u_{n+1-i}
\]

\[
y_{n+3}^* = y_{n+2}^* + \sum_{i=1}^{T} h_i \Delta u_{n+3-i}
\]

\[
=(h_2 + h_2 + h_1) \Delta u_n + (h_2 + h_1) \Delta u_{n+1} + h_1 \Delta u_{n+2} + \sum_{i=4}^{T} h_i \Delta u_{n+3-i} + y_n + \sum_{i=2}^{T} h_i \Delta u_{n+2-i} + \sum_{i=3}^{T} h_i \Delta u_{n+1-i}
\]

\[
y_{n+V}^* = y_{n+V-1}^* + \sum_{i=1}^{T} h_i \Delta u_{n+V-i} = a_V \Delta u_n + a_{V-1} \Delta u_{n+1} + \cdots + a_{V-U+1} \Delta u_{n+U-1} + y_n + \sum_{i=V+1}^{T} h_i \Delta u_{n+V-i} + \sum_{i=3}^{T} h_i \Delta u_{n+2-i} + \sum_{i=2}^{T} h_i \Delta u_{n+1-i}
\]

\[
= a_V \Delta u_n + a_{V-1} \Delta u_{n+1} + \cdots + a_{V-U+1} \Delta u_{n+U-1} + y_n + \sum_{j=1}^{V} \sum_{i=j+1}^{T} h_i \Delta u_{n+j-i}
\]

\[\text{ Depend on only future } \quad \text{ Depend on only past}\]
Controller Design Method (DMC)

• Objective
 - Minimize errors between future set points and predictions

\[
\hat{E} = \begin{bmatrix}
 r_{n+1} - y_{n+1}^*
 \\
 r_{n+2} - y_{n+2}^*
 \\
 \vdots
 \\
 r_{n+N} - y_{n+N}^*
\end{bmatrix} = r - (A\Delta u + y_n e + P) = -A\Delta u + \hat{E}'
\]

Closed-loop prediction error based only on current and future control action

where

\[
\hat{E}' = \begin{bmatrix}
 r_{n+1} - y_n - P_1 \\
 r_{n+2} - y_n - P_2 \\
 \vdots \\
 r_{n+N} - y_n - P_N
\end{bmatrix}
\]

Open-loop prediction error based only on past control action

• Solution

\[-A\Delta u + \hat{E}' = 0 \Rightarrow \Delta u = (A^*)^{-1}\hat{E}'\]

Some inverse of A
• If $U=V$ and A is invertible,

$$\Delta u = A^{-1} \hat{E}'$$

It gives no steady-state offset since it has integral action.

• If $U<V$ (A is not invertible),

$$\Delta u = (A^T A)^{-1} A^T \hat{E}' = K_c \hat{E}'$$

A^+: Left pseudoinverse of A

$A^+A=I$: identity matrix

AA^+: idempotent matrix ($BB=B$)

• Optimization concept

$$\min(J = \hat{E}^T \hat{E}) = \min(-A\Delta u + \hat{E}')^T (-A\Delta u + \hat{E}')$$

$$\frac{\partial J}{\partial \Delta u} = -2A^T (-A\Delta u + \hat{E}') = 2(A^T A\Delta u - A^T \hat{E}') = 0$$

$$\Rightarrow \Delta u = (A^T A)^{-1} A^T \hat{E}'$$

$$\min J = (\hat{E}^T W_1 \hat{E} + \Delta u^T W_2 \Delta u)$$

$$\frac{\partial J}{\partial \Delta u} = -2A^T W_1 (-A\Delta u + \hat{E}') + 2W_2 \Delta u = 2((A^T W_1 A + W_2) \Delta u - A^T W_1 \hat{E}') = 0$$

$$\Rightarrow \Delta u = (A^T W_1 A + W_2)^{-1} A^T W_1 \hat{E}'$$
• **Adjustable parameters of MPC (Tuning parameters)**

 – Weighting matrices

 • If $W_1 >> W_2$, the most important objective is to minimize error of the process outputs and inputs will move quite freely.

 • If $W_1 << W_2$, the most important objective is to minimize the input movements and controller cares much less the errors. (almost no control)

 • Otherwise, it depends on the relative size of the weighting matrices.

 – If $W_1 > W_2$, aggressive action will be taken to reduce the error.

 – If $W_1 < W_2$, conservative action will be taken to reduce the input movements while reduce the error if the action is not too aggressive.

• The W_2 is called *input penalty* or *input move suppression factor*.

• Typically, use $W_1 = I$ and $W_2 = f^2 I$ and adjust f.

• If a different weighting for outputs or inputs is required, use diagonal matrix as the weighting matrix.
- **Horizons**
 - **Model horizon** (T)
 - Select T such that $T \Delta t \geq$ (open-loop settling time)
 - T is typically 20 to 70.
 - **Prediction horizon** (V)
 - Increasing V results in more conservative control action, a stabilizing effect, and more computational burden.
 - An important tuning parameter
 - **Control horizon** (U)
 - Suitable first guess is to choose U so that $U \Delta t \equiv t_{60}$
 - The larger the value of U is, the more computation time is required.
 - Too large a value of U results in excessive control action
 - Smaller value of U leads to a robust controller that is relatively insensitive to model error.
MIMO Extension

• **2x2 case**

\[
\hat{E} = -A\Delta u + \hat{E}'
\]

where

\[
\hat{E} = [\hat{E}_1; \hat{E}_2] \quad \Delta u = [\Delta u_1; \Delta u_2]
\]

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

• **General case**

 – Extend the vectors and matrices in the same manner.

 – If the MPC is formulated in a different form such as state-space model, different form of MIMO extension is more convenient.
Constraints Handling

• Formulate and solve the MPC in an optimization framework

\[\min J = (\hat{E}^T W_1 \hat{E} + \Delta u^T W_2 \Delta u) \]

subject to \(u^L \leq u \leq u^U \)
\[y^L \leq y \leq y^U \]
and other constraints

• Solve this optimization problem in QP
 – DMC by DMCC used LP
Model Algorithmic Control (MAC)

- **Process model:**
 - based on \(u \) not \(\Delta u \)

- **Set point:**
 - First-order approach to set point
 \[
 r_{k+i}^* = \alpha y_{k+i-1} + (1 - \alpha)r_{k+i}
 \]
 - Speed of response is determined by \(\alpha \) (tuning parameter)

- **Tuning parameters**
 - Speed of desired response
 - \(U=V \) (fixed, not used as tuning parameters)
 - \(V \) is chosen so that \(V \Delta t \approx \) (open-loop settling time)
 - Time varying weight: \(J = \sum_{i=1}^{V} w(i)e(k + i)^2 \)

- **Solution is obtained using QP**
Comments on MPC

• Implementation
 – Update the prediction model based on the current measurement.
 – Calculate U moves from the optimization and implement the first input moves and throw out the rest.

• The MPC is minimizing the error between the set point and predicted output.
 – In the prediction, the measurement is incorporated and it works as a feedback.
 – No steady-state offset: integrator in the control law

• Disturbance Model can be added
 – Known measured disturbance can be incorporated by adding disturbance model in the same manner.
Example 1: Blending control system

Objectives:
-- Control the composition of A and B
-- Control total flow if possible

Constraints:
-- Flow rates are limited

Classical solution

MPC solution

\[
\min \sum_{i=1}^{V} (r_A(k + i | k) - r_A^*)^2 + (r_B(k + i | k) - r_B^*)^2 \\
+ w(q(k + i | k) - q^*)^2
\]

subject to \(u_i^L \leq u_i(j) \leq u_i^U\) \((i = 1, 2, 3)\)
\((j = k, \ldots, k + U - 1)\)
\(w \leq 1\)
• Example 2: Heavy Oil Fractionator

- Keep $y_7 \geq T_{\text{min}}$
- Control the two compositions y_1 and y_2
- Minimize u_3 to maximize the heat recovery.

$$
\min \sum_{i=1}^{V} (y_1(k+i|k)-y_1^*)^2 + (y_2(k+i|k)-y_2^*)^2 \\
+ w_1(u_3)^2
$$

subject to $u_i^L \leq u_i(j) \leq u_i^U \ (i = 1, 2, 3)$

$(j = k, \ldots, k + U - 1)$

$y_7 \geq T_{\text{min}}$
Identification of Models

• FSR or FIR models: use step or pulse test
 – Assume operation at steady state
 – Make change in input Δu (or δu)
 • If Δu is too small, output change may not noticeable
 • If Δu is too large, linearity may not hold
 – Measure output at regular intervals Δt
 • The Δt should be chosen so that T is 20-70, typically 40.
 – Perform multiple experiments and average them and additional experiments for verification
 – High frequency information may not be accurate for step test.
 – Ideal pulse is hard to implement.
• Least Squares Identification

 - Get the output using PRBS (Pseudo Random Binary Signal)
 \[u = [u_1 \ u_2 \ \cdots \ u_M] \quad y = [y_1 \ y_2 \ \cdots \ y_M] \]

 - Get the FIR model
 \[\tilde{y}_k = h_1 u_{k-1} + h_2 u_{k-2} + \cdots + h_N u_{k-N} \]

 - Minimize the error between measurements and output, \(d_k = y_k - \tilde{y}_k \)

 \[
 \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_M \\
 \end{bmatrix} = \begin{bmatrix}
 u_0 & u_{-1} & \cdots & u_{1-N} \\
 u_1 & u_0 & \cdots & u_{2-N} \\
 \vdots & \vdots & \ddots & \vdots \\
 u_{M-1} & u_{M-2} & \cdots & u_{M-N} \\
 \end{bmatrix} \begin{bmatrix}
 h_1 \\
 h_1 \\
 \vdots \\
 h_N \\
 \end{bmatrix} + \begin{bmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_M \\
 \end{bmatrix} \quad d = y - Uh \\
 \]

 \[
 \min_h d^T d = \min_h (y - Uh)^T (y - Uh) \Rightarrow h = (U^T U)^{-1} U^T y \\
 \]
• **Discussions**

 – Random input testing, if appropriately designed, gives better models than the step or pulse testing does since it can equally excite low to high frequency dynamics of the process.

 – If $U^T U$ is singular, the inverse doesn't exist and identification fails. (Need persistent excitation condition)

 – When the number of coefficients is large, $U^T U$ can be easily singular (or nearly singular). To avoid the numerical, a regularization term is added the the cost function. (ridge regression)

\[
\min_h [(y - Uh)^T (y - Uh) + \alpha h^T h] \Rightarrow h = (U^T U + \alpha I)^{-1} U^T y
\]
Data Treatments

• The data need to be processed before they are used in identification.

• Spike/Outlier Removal
 – Check plots of data and remove obvious outliers (e.g., that are impossible with respect to surrounding data points). Fill in by interpolation.
 – After modeling, plot of actual vs. predicted output (using measured input and modeling equations) may suggest additional outliers. Remove and redo modeling, if necessary.
 – But don't remove data unless there is a clear justification.
• **Bias Removal and Normalization**

 - Compute the data average and subtract it to create deviation variables, i.e.,
 \[\tilde{y}_k = \frac{y_k - y_{\text{ref}}}{c_y} \quad \text{where} \quad y_{\text{ref}} = \frac{\sum_{i=1}^{M} y_i}{M} \]
 \[\tilde{u}_k = \frac{u_k - u_{\text{ref}}}{c_u} \quad \text{where} \quad u_{\text{ref}} = \frac{\sum_{i=1}^{M} u_i}{M} \]

 - Use the given steady-state values of the variables instead to compute the deviation variables, i.e.,
 \[\tilde{y}_k = \frac{y_k - y_{ss}}{c_y} \quad \text{and} \quad \tilde{u}_k = \frac{u_k - u_{ss}}{c_u} \]

 where \(y_{ss} \) and \(u_{ss} \) represent a priori given steady-state values of the process output and input respectively.

 - The input/output data can be biased by the nonzero steady state and also by load disturbance effects. To remove the (time-varying) bias, differencing can be performed for the input/output data.
 \[\Delta y_k = \frac{y_k - y_{k-1}}{c_y} \quad \text{and} \quad \Delta u_k = \frac{u_k - u_{k-1}}{c_u} \]

 \[\Rightarrow \text{Identification for} \, \Delta y_k \, \text{and} \, \Delta u_k \]

 - In all cases, the process data are conditioned by scaling before using in identification.
• Prefiltering

 - If the data contain too much frequency components over an undesired range and/or if we want to obtain a model that fits well the data over a certain frequency range, data prefiltering (via digital filters) can be done.

 The two filters should be same.