질병 진단용 스마트 콘택트렌즈 바이오 센서의 연구 동향

Recent Research Trend in Smart Contact Lenses for Mobile Healthcare

김주희 · 박창웅 | Joohy Kim · Jang-Ung Park

Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Korea
E-mail: jang-ung@yonsei.ac.kr

1. 서론

최근 산업의 질 향상에 따라 건강에 대한 관심이 커지면서 질병 진단을 할 수 있는 생체 신호 모니터링 기술이 연구되고 있다. 특히, 웨어러블 전자장치(wearable electronics)에 대한 연구가 활발히 진행되면서 맛, 눈물, 접, 피부, 장기로부터 질병을 진단하는 분야까지 확장되었다. 질병을 진단할 수 있는 바이오 마커를 포함하는 체액 중에서 눈물은 혈청과 가장 비슷하여 바이오 센서 부착 장소로 주목을 받고 있다. 따라서 오늘날 콘택트렌즈를 통해 시력 보정뿐만 아니라 눈물 속에 존재하는 바이오 마커를 감지하여 질병을 진단하고 치료하는 목적으로 스마트 콘택트렌즈 개발이 진행되고 있다.

최근 신체가능한 투명 전극 재료, 질병 진단 가능 센서, 무선 통신 기술의 지속적인 개발로 스마트 콘택트렌즈의 개발이 촉진되었다. 이런 스마트 콘택트렌즈에 대한 연구는 10여 년 전부터 시작되어 실시간으로 질병을 모니터링 하기 위한 프로토타입 렌즈가 보고되었다. 외부로부터 파워를 공급받고 추가 보조 장치를 사용하여 무선으로 눈물 속 끌로스를 측정하는 콘택트렌즈 센서의 개념을 Google, Novartis로부터 처음 제시되었다. 이러한 콘택트렌즈 플랫폼은 현재 침습적으로 혈당을 측정하는 방법의 한계를 극복하게 해준다. 지금까지 보고 된 스마트 콘택트렌즈 센서는 주로 당뇨병 관리를 위한 끌로스를 지속적으로 모니터링하거나 인슐린 복용 장을 위한 인슐린 모니터링하는데 주력하였다. 하지만 콘택트렌즈 플랫폼을 통해 질병을 진단하는 스마트 콘택트렌즈의 진단 잠재력은 상당하다. 콘택트렌즈는 눈으로부터 바이오 마커를 침습적이며, 실시간으로 측정할 수 있어 빠른 진단 및 치료 피드백이 가능하다는 점에서 큰 장점을 가지고 있다.

본 논문에서는 i) 눈으로부터 측정할 수 있는 바이오 마커의 종류, ii) 스마트 콘택트렌즈를 통해 눈물 속 바이오 마커를 측정하는 센서 iii) 인공의 압력을 모니터링하는 콘택트렌즈 센서에 대해서 기술하고자 한다.

2. 본론

2.1 눈에서 측정 가능한 바이오 마커

눈에서 질병을 진단할 수 있는 바이오 마커는 크게 2가지로 분류된다. 하나는 눈물 속에 있는 물질을 측정하는 화학적 요인이고, 하나는 안구로부터 측정할 수 있는 물리적인 요인이다. 먼저 눈물 속에 있는 바이오 마커에 대해서 소개하였다.

Author

김주희
2014
2019
2019-현재

박창웅
2000
2003
2009
2010
2010-2018
2018-현재

UNIST 신소재공학과 (학사)
UNIST 신소재공학과 (석, 박사)
연세대학교 신소재공학과 (박사)
연세대학교 신소재공학과 (박사)

한양대학교 생명공학과 (학사)
KAIST 재료공학과 (석사)
UIUC 재료공학과 (박사)
Harvard Univ. (박사) (연구원)
UNIST 신소재공학과 교수
UNIST 신소재공학과 교수

Polymer Science and Technology Vol. 30, No. 1, February 2019
눈물은 종류가 크게 3가지로 나뉩니다. 첫번째는 눈을 깨끗하게 하고 요함해 역할을 해주는 기초 눈물(basal tears), 두번째는 타월이나 면직 등이 들어가 눈을 자극했을 때 나오는 반사 눈물(reflex tears), 마지막은 울기나 울 때 나오는 심각 눈물(psychic tears)이다. 눈물은 눈물샘, 결막상피, 각막상피에 있는 "협력-눈물 장벽"에 의해 혈액과 분리되어 있지만 혈액이 있는 혈관의 눈로로 인해 혈액 성분과 광범위하게 비슷하기 때문에, 눈물 속에는 다양한 종류의 단백질과 이온들이 있으나 사람의 질병 및 상태를 판단하는 데 사용될 수 있다(표 1).

물들의 주요 성분에는 호소(losozyme), 신경 펌피드(neuropeptides), 항체(antibodies) 및 럭토페린(lactoferrin)이 포함되어 있다. 전기 영동 기술(electrophoretic)의 액체 크로마토그래피(fragment chromatography, 질량 분석법(mass spectrometry)을 기반으로 하여, 97개의 단백질과 Na+ K+, Cl-, HCO3- 등의 이온들이 눈물 속에 있는 것을 확인하였다. 그러나 보고된 단백질의 성분과 농도는 눈물 세포질 방법에 따라 다르며, 대부분은 54개, 많게도 1,543개까지 분석된다.

기초 눈물 이외에, 반사 눈물과 심각 눈물이 있는데, 신경 알신경과 반응을 통해 분비되는 반사 눈물은 눈에 있는 자극을 세정하는 방어 역할을 한다. 또한, 증거가 분자, 신경알신경의 이온으로 인해 심각 눈물이 유발된다. 이런 심각 눈물에는 프로파라민, 부신피질 자극 호르몬과 같은 호르몬 농도가 높다. 따라서 기초 눈물이외의 다른 눈물들이 분비가 되면 분비 측정하여 혈청을 다른 바이오 마커 농도를 측정하게 된다. 눈물 채취 방법에 따라 눈에 자극을 줄 수 있고 이에 따라 바이오 마커의 농도를 달리게 된다.

여러 연구들이 눈물 채취 방법 중 눈물 채취하는 여드름을 각막과 결막 상피를 자극함에 따라 수집된 눈물의 성분 농도는 분류하여 다른 것을 볼 수 있다. 예를 들어, 눈물의 포도당 농도 범위는 0.13.6 mM, 0.128-0.166 mM, 최근에는 0.013 mM도 보고되었다. 그러므로 눈물은 최소한의 눈 자극으로 수집해 정확한 바이오 마커를 측정할 수 있다.

이에 콘텍트렌즈 플랫폼을 통해 측정한 눈물 속 바이오 마커의 농도는 다음의 눈물 채취 방법에 비해 정확할 수 있다.

눈물 채취할 수 있는 대표적인 추적장치는 다음과 같다.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Disease/condition</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>Diabetes</td>
<td>13</td>
</tr>
<tr>
<td>Lactate</td>
<td>Ischemia, sepsis</td>
<td>14</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Glaucoma</td>
<td>15</td>
</tr>
<tr>
<td>IgA</td>
<td>AIDS</td>
<td>16</td>
</tr>
<tr>
<td>Lactoglobulins, albumin</td>
<td>Cancer</td>
<td>17-19</td>
</tr>
<tr>
<td>lysozyme</td>
<td>Bipolaris</td>
<td>17,20</td>
</tr>
<tr>
<td>proline-rich protein 4</td>
<td>Dry eye</td>
<td>21</td>
</tr>
<tr>
<td>Mammaglobin B, lipophilin A</td>
<td>Hyper/hypoaesthesia</td>
<td>22</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Hyper/hypokalemia and an indicator of ocular disease</td>
<td>8</td>
</tr>
<tr>
<td>K⁺</td>
<td>Hyper/hypoaesthesia and an indicator of ocular disease</td>
<td>8</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Hyper/hypochloremia</td>
<td>23</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>Respiratory quotient indicator</td>
<td>24</td>
</tr>
</tbody>
</table>

2.2.1 FET 타입 전장 센서
반도체 산업에서 잘 사용되는 제조 기술로는 콘텍트렌즈에 적용할 수 있는 FET 타입 센서를 구성하는 데 사용되었다. 이러한 시스템은 바이오 마커를 측정할 수 있는 효소나 항체를 FET의 채널에 리커(linker)를 사용하여 고정시킨 후 바이오 마커에 선택적으로 반응하여 전기적 신호로 바이오 마커 농도를 나타낼 수 있다. 연세대학교 박동욱 교수 연구팀은 글루코스를 선택적으로 모니터링하기 위해 그램필름 채널에 생리적 글루코스 oxidase를 그램필름 채널에 pyrene linker를 이용하여 붙였다. 이 후 센서를 상용화된 콘텍트렌즈에 적용하여 토끼의 눈물 속 글루코스를 측정하였다. 제작된 센서는 눈물 속 글루코스 농도를 포함하였으며, 측정된 값은 무선 루프 안테나를 통해 외부로 전달되었으며, 눈물 속 다른 물질이 있어도 선택적으로 글루코스를 감지할 수 있음을 보여주었다(그림 1a, b). 특히 이 콘텍트렌즈는 지속적으로 보고된 렌즈와 달리 상용화되어 있는 렌즈를 사용함으로써 스마트 콘텍트렌즈 상용화에 한발 더 다가갈 수 있을。

2.2.2 전기화학 센서
전기화학 센서 또한 바이오 마커를 채택할 수 있는 다양한 방법으로 사용하여 눈을 측정할 수
특 집 | 질병 진단용 스마트 콘텍트렌즈 바이오 센서의 연구 동향

이 센서는 포도당 농도를 측정하기 위해 삼진극(counter electrodes, working electrode, reference electrode) 시스템을 사용한다. 글루코스 옥시다이제를 사용하여, 글루코스가 있을 때 반응에 의해 전기 전자가 생성된다. 생성된 전자의 크기는 신화된 포도당 농도에 비례하여 전기적 신호로 전달된다. 위성선 대학의 Babak A. Parviz 교수 연구팀은 삼진극 시스템을 PET(polyethylene terephthalate) 위에 형성하였고, titania sol gel 밸브에 글루코스 옥시다이제를 고정시켜 센서를 제작하여 눈을 속 글루코스를 측정하였다(그림 1c)。

측정된 정보는 무선으로 전달되고, 20초 정도의 지연이 발생한다. 글루코스 측정 센서뿐만 아니라 lactate 센서도 고려되었으며 이 센서는 글루코스 옥시다이제 대신에 적산 옥시다이제(lactate oxidase)를 사용한다. 고려된 센서도 FET로 제작한 콘텍트렌즈 모형에 제작되었으며 글루테알데하이드(glutaralddehyde)를 사용하여 고 정되었다. 센서의 응답 속도는 3조 초 정도이며, 눈물 속 물질(ascorbic acid)에도 영향을 받지 않음이 보고되었다. 이러한 전자화학 센서는 특정 바이오 마커에 대한 선택성과 빠르게 측정할 수 있다는 장점 때문에 콘텍트렌즈 센서에 적용하였다.

2.3 인공의 물리적 요인 측정 바이오센서

높은 안압은 뉴런내각의 주된 요인이다. 안압은 콘텍트렌즈에 영향을 주게 되므로 안압을 모니터링하는 바이오센서에는 i) 전장용량식(capacitive type) 센서, ii) 스트레인(strain) 센서가 있다.

2.3.1 전장용량식(Capacitive Type) 센서

센서는 각각 곡률에서 안압을 측정하기 위해 전기적 통하는 유전층 두께의 전극 사이에 위치시킨다. 이 때 안압이 늘어지면 유전층 두께가 약아지고, 안압이 낮아지면 유전층 두께가 두꺼워진다(그림 2a)。

센서의 생체 적합성을 위해 전극을 parafilm을 사용하였다. 그리고 안세대배교 배양용 폭의 고온기도 구체적 모형을 이용하여 콘텍트렌즈 센서를 제작하였다(그림 2b)。

센서는 센서의 안압 변화를 감지하고, 전극과 유도 코일은 구리를 이용하여 콘텍트렌즈 센서를 제작하였다(그림 2c)。

센서는 안압 변화가 빠르기 때문에 콘텍트렌즈 센서는 바이오_sensor과 빠르게 동작할 수 있도록 측정을 할 수 있으며, 무선으로 측정 가능하며 측정 기기는 최대 2.5 cm까지 가능하다. 하지만 실제 사용자의 눈에 작용할 경우, 눈 감염과 같은 안압에 영향에 미칠 수 있는 요인이 있기 때문에, 그릴 2의 (a) 전장용량식 센서의 안압 모니터링 측정 베어러니즈를 포함한 모식도(2c) 각기 다른 안압 측정 비교 센서, (d) 전장용 콘텍트렌즈 센서, (e) 퀘어 콘텍트렌즈 센서로 무선으로 측정한 안압 범위(2a) 스트레인 게이지 센서로 제작된 콘텍트렌즈 센서 이미지(2b)
2.3.2 스트레인(Strain) 센서

안압 측정용 센서는 스트레인 채지기를 사용하여 각각 꼴
물의 변화를 전기 신호로 변환하여 안압을 측정한다. 센서는
각각의 꼴물을 측정하기 위한 두 개의 측정장치 스트레인
게이지와 열 보상을 위한 두 개의 보상장 스트레인 게이
지로 이루어져 있다. 이러한 Wheatstone bridge 구조 회로
는 각각 꼴물에 대한 면적률을 증가시켜준다. 안압 측정용
스트레인 채지기는 전기 측정 및 생체 적합성이 있는 플러
이미드의 두 촉 사이에 Pt-Ti로 제작되었다. 측정은 마이크로
프로세서와 금 안테나를 콘크레트레스에 삽입함으로써 가능했
다. 금 안테나는 증착을 사용하여 형성하였고, 마이크로 프로
세서는 무선 전원 공급과 데이터 전송을 허용한다.(그림
2a). 이 센서는 왜곡 높이 사용하였고 11-14 mmHg 사이에
서 안압을 변화시키 측정하였고 이 변화를 센서가 측정할 수
있다. 이러한 스트레인 채지 센서는 열 보상을 할 수 있어
 좀 더 정확한 안압을 측정할 수 있다.

3. 결론

콘크레트레스는 시력 교정으로 사용되어 왔지만 최근 질병
을 진단할 수 있는 바이오센서를 콘크레트레스에 통합시키는
스마트 콘크레트레스에 대한 연구가 새로 열렸다. 높은 속에서
글루코스 농도를 측정하여 당뇨병을 모니터링할 수 있고, 안
압을 측정하여 녹내장 진단할 수 있는 등 사용 범위가 점
점 넓어지고 있다. 높은 높이에서 진단할 수 있는 바이오미크로
바이오센서가 제작될 수 있으므로 스마트 콘크레트레스와 통
합할 수 있는 바이오센서는 더욱 주목할 것으로 보인다. 이렇게
제작된 스마트 콘크레트레스는 비침습적, 실시간으로 질병 진
단이 가능하고 무선으로 정보를 보낼 수 있기 때문에 추후
무선화 연구가 지속될 것으로 생각된다.

참고문헌