고분자 액츄에이터
(Polymer Actuator)

액츄에이터(Actuator)란 전기장, 자기장, 빛, 열 등과 같은 다양한 외부 자극 에너지를 응력 또는 변형률과 같은 기계적인 형태의 에너지로 변환시켜 물체를 들어올리거나 시스템을 구동시키는 역할을 하는 핵심 부분소자를 의미합니다. 전통적으로 세라믹(예: PbZrTiO3) 또는 합금(예: Ti-Ni) 소재 기반의 액츄에이터가 널리 사용되어 왔으나, 근래에는 유연전자, 소프트 로봇, 바이오 및 의학분야의 적용이 용이한 고분자 소재 기반 액츄에이터에 대한 연구가 많은 주목을 받고 있습니다. 고분자 소재는 고유의 가공우수성, 유연성, 경량성으로 인해 필름, 박막 및 섬유 등 다양한 형태로 초소형 액츄에이터를 제조하기에 용이하며, 자극감응성과 같은 추가적인 기능의 도입이 가능하므로 4D 프린팅 기술에서도 적합합니다. 특히, 고분자 소재로 인쇄근육과 비슷하거나 그 이상의 탄성 및 강성까지 구현할 수 있으므로 인공근육과 같은 생체모방형 액츄에이터 등으로의 활용이 가능합니다.

본 특징에서는 고분자 액츄에이터 개발에 활용될 수 있는 다양한 고분자 소재, 구동원리 및 응용에 대한 최신 연구결과들을 소개하고자 합니다. 먼저 전기활성 고분자를 이용해 낮은 전압으로도 빠른 응답속도와 대변위를 구현할 수 있는 기술에 대해 소개하고, 다음으로 자연에서 얻을 수 있는 천연 고분자제로인 생물로보스를 활용한 생물로보스 액츄에이터, 그리고 고분자 복합소재를 이용한 액츄에이터를 소개할 예정입니다. 마지막으로, 자극감응성 하이드로젤을 이용한 연성 액츄에이터 기술에 대해서도 본 특징에서 다루어볼 예정입니다.

본 특징이 고분자 액츄에이터 기술 분야에 관심이 있는 다양한 기업, 대학 및 연구소 분들에게 유용한 자료로 활용될 수 있기를 바랍니다. 끝으로, 바쁜 일정에도 불구하고 읽고 흥미로운 인코딩에 읽은 저자분들에게 다시 한번 깊은 감사의 마음을 전합니다.