PCDTBT 전자 주개를 기반으로 하는 고분자 태양전지

Polymer Solar Cell Based on PCDTBT Electron Donating Material

이지훈 · 신인수 · 박성흠 | Ji Hoon Lee · In Su Sin · Sung Heum Park
Department of Physics, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 608-737, Korea
E-mail: spark@pknu.ac.kr

1. 서론

공액 고분자(conjugated polymer)와 풀러렌(Fullerene)의 별크 이중접합(bulk-heterojunction)을 근간으로 하는 고분자 태양전지에는 경제성, 경량성, 재작용이성에서 타 태양전지에 비해 우수하며, 특히 인쇄가 가능하고 휘어질 수 있으므로 유연한 차세대 에너지원으로 큰 기대를 모고 있다. 단일 접합 구조와 달리, 기본적인 별크 이중접합은 전자 주개(electron donor)와 전자 받개(electron acceptor) 물질의 자발적인 상분리(Phase separation)를 통한 이중접합의 자기조합(self-assembly)을 수반한다. 그리고 이러한 자발적 인 상분리에 의해서 나노 구조의 이중접합이 활성물질 전체에 걸쳐 형성된다.1,3

지난 10년간, 별크 이중접합을 근간으로 하는 고분자 태양전지에 관한 연구는 Regio-regular poly-(3-hexylthiophene)(P3HT)를 전자 주개로 사용하고, [6,6]-phenyl-C61-butyric acid methyl ester(PCBM)을 전자 받개로 사용하는 연구가 주를 이루었으며 4.5%의 에너지 전환 효율을 보여 주었다.4-7 아직까지 P3HT/PCBM을 근간으로 하는 태양전지에 관한 연구들이 발표되고 있지만, P3HT의 비교적 큰 밴드갭 (~1.9 eV)은 흡수할 수 있는 태양 스펙트럼의 영역을 제한하고, P3HT의 highest occupied molecular orbital(HOMO)과 PCBM의 lowest unoccupied molecular orbital(LUMO) 사이의 비교적 작은 에너지차는 낮은 개방전압(open circuit voltage)의 원인이 된다. 그러므로 고분자 태양전지의 효율을 향상시키기 위해서는 근본적으로 전자 주개로 사용되는 공액 고분자(semiconducting polymer)의 밴드갭을 낮추어 태양광의 흡수를 증가시키고 효과적으로 HOMO 준위를 크게 하여 높은 개방전압(open circuit voltage)을 유도하여야 한다.8,9

이러한 이유로 최근 상대적으로 높은 HOMO 준위로부터 개방전압의 상승과 더불어 더 넓은 영역의 태양 스펙트럼을 흡수할 수 있는 낮은 밴드갭을 가진다는 다양한 구조의 고분자들이 개발되었다.10,11
이들 고분자는 대부분 단위 셀(unit cell)을 이루는 분자구조는 다르지만 개념적으로 단위 셀 내에 전자가 평면으로 가득 차잇는 것은 전자 주향의 전자 방향에 합성 형태를 띠고 있다. 그러므로 이러한 구조를 가진 고분자들은 상대적으로 낮은 밴드갭과 높은 HOMO 에너지 준위로부터 광 전류 및 개방전압의 상승을 가져왔으며, 이를 통해 태양 전지에서 6-11%에 이르는 에너지 전환 효율을 이끌었다.12,13

한편 이러한 전자 주향 전자 방향 합성 형태를 가지는 고분자들 중에서 폴리바라졸(poly(2,7-carbazole)) 유도체가 전자 주향으로 사용하는 흔한 혼합 형태는 HOMO 준위가 높아서 높은 개방전압을 기대할 수 있고, 다양한 전자 방향 물질의 결합을 통해 상대적으로 쉽게 고분자의 에너지 격을 조절할 수 있다.14,15 그러므로 이러한 폴리바라졸 유도체가 가지는 합성시의 장점을 이용하면 밴드갭을 낮추어 보다 많은 영역의 태양 스펙트럼을 흡수할 수 있게 함으로써에, 낮은 HOMO 에너지 준위로부터 개방전압을 상승시킬 수 있다. 캐나다의 Leclerc 교수 연구팀은 폴리바라졸 유도체와 다양한 전자 방향 물질을 결합한 고분자를 개발하여 다양한 에너지 밴드갭과 낮은 개방전압을 가지는 물질들은 발표하였는데, 그 중 poly[N-9-hepta-decanyl-2,7-carbazole-alt-5,5-(4,4',7-di-2-thienyl-2',1',3'-benzothiadiazo)(PCDTBT)의 경우 6-7%에 이르는 높은 에너지 전환 효율을 보여주었다.14,15 또한 최근 본 연구자 및 공동 연구자는 이러한 PCDTBT는 낮은 에너지 전환 효율뿐만 아니라 매우 높은 내부양자효율(internal quantum efficiency)을 보이고 이러한 내부 양자효율은 PCDTBT와 PCBM 및 [6,6]-phenyl C60-butyric acid methyl ester(PC60BM)의 모폴로지(morphology) 변화와 소자체적 조건에 매우 민감함을 보고하였다.16 이들에서 최근 발표된 PCDTBT를 이용한 고분자 태양전지의 리뷰를 바탕으로 소자체적 및 측정에 관한 정보를 제공하고 추가적인 실험 결과를 통해 PCDTBT의 모폴로지 변화에 따른 소자 특성 및 내부 양자효율의 변화에 대해 상세히 소개하고자 한다.

2. 본론

2.1 고분자 태양전지에서의 광 전류 생성

캐나다의 Mario Leclerc 교수 연구팀에서 PCDTBT를 이용한 고분자 태양전지는 처음 발표한 당시 PCDTBT: PCBM을 활성층으로 사용한 소자는 낮은 개방전압을 보였으나 에너지 전환효율은 불과 2.3%에 머물렀다.14 이는 상대적으로 낮은 광 전류가 원인이며, 따라서 PCDTBT를 이용한 태양전지의 효율을 향상시키기 위해서는 무엇보다 광 전류를 증가시키는 것이 필요하다.

고분자 태양전지에서 광 전류 생성은 두 가지 요소에 의해 좌우되는데, (1) "활성층에서 얼마나 많은 빛을 흡수하느냐"와 (2) "흡수된 빛을 얼마나 효율적으로 전극으로 수직하느냐를 나타내는 내부 양자효율"이 그것이다. 여기서 내부양자효율은 흡수된 광자의 전자에 대한 전극에 수집된 캐리어(carrier)들의 비율로 정의된다.15 이러한 (1)의 흡수율은 두께에 직접적으로 관계되므로 단순히 두께를 증가 시킴으로 얻을 수 있다. 하지만, 비정질(аморфous) 구조를 가지는 공극 고분자의 자체 특성과 공극 고분자 내에서의 낮은 전하 이동도(mobility)로 인해 두께가 증가하면 소자 내부의 저항이 증가하고, 이것은 소자의 밀렉터(fill factor, FF)를 감소시켜 전체적인 소자의 성능을 떨어뜨린다. 따라서 높은 전전류를 얻기 위해서는 활성층의 두께를 유지시키면서 흡수하는 광자의 수를 증가시키아야 한다.16,17

두께를 증가시키지 않고 높은 흡수를 증가시키는 여러 가지 효율적인 방법 중에서 활성층과 최상부 전극 사이에 optical spacer를 삽입하는 방법은 활성층 내외의 분포

![그림 1](image_url)

그림 1. (a) 태양전지의 구조 및 구성물질의 분자구조, (b) 구성성분의 에너지 준위, (c) PCDTBT 및 PC60BM의 흡수 스펙트럼.
2.2 티타늄 산화물의 Optical Spacer와 정립 장벽

유색 공정이 가능한 티타늄 산화물(TiO$_2$)은 가시 광 영역에서 투명하고, 전자이동도가 높고 LUMO 에너지 준위가 알루미늄의 인알함과 잘 일치하기 때문에 optical spacer로 아주 적합한 물질이다. 16,18,19 그림 2(a)는 PCDTBT를 이용한 태양전지의 구조와 함께 구성 물질의 분자 구조를 보여주며, 그림 1(b)는 구성성분 의 에너지 준위, 그리고 그림 1(c)는 PCDTBT와 PC$_{70}$BM 밀림의 흡수 스펙트럼을 보여준다. PCDTBT는 전자 주기에 사용되었고, PC$_{70}$BM은 전자 반개로 사용되었다. 현재까지 알려진 연구결과에 의하면, 고분자 태양전지의 개발전망은 빛에 의해 재현되는 전자 주기와 전자 반개의 베르미 준위와 관계되고, 이는 전자 주기의 HOMO 준위와 전자 반개의 LUMO 준위에 대응되기 때문에 이 두 에너지 준위의 차이가 개발전망의 크기를 결정짓는 중요한 인수가 된다. 20-21 따라서 ~5.5 eV의 비교적 높은 PCDTBT 전자 주기의 HOMO 에너지 준위는 큰 편이 편한 전개를 이끌어간다. 또한 PCBM과 비교해다 대칭성이 중층한 PC$_{70}$BM은 더 높은 흡수율을 가지며, 이로부터 광 전류의 증가를 가져온다. 22,23

![Diagram](https://example.com/diagram.png)

그림 2. (a) Optical spacer 개념도, 19 (b) TiO$_2$층의 두께에 따른 소자 내부의의 분포 스펙트럼, (c) TiO$_2$층의 도입에 따른 흡수 스펙트럼, (d) TiO$_2$층의 도입에 따른 IPCE 스펙트럼. 16
2.3 고분자 태양전자가 내부양자효율을 결정하는 변수들
고분자 태양전자 내에서의 광 전류의 생성은 앞서 언급한 활성층의 흡수율 및 밝이 흡수에 의해 소자 내부에 형성되는 에시드온의 개수뿐만 아니라 형성된 에시드온의 전하의 형태로 양극 및 음극에 수립되는 정도를 나타내는 내부 양자효율에 의해 결정된다.25,26 따라서 고분자 태양전자의 광전류를 증가시키기 위해서는 소자 내부의 흡수율과 함께 내부 양자효율을 최대화 시켜야 한다. 범위의 집합으로의 한 고분자 태양전자의 내부양자효율은 크게 다음의 세 가지 기여에 따라 결정된다.

(1) 빛의 흡수를 통해 생성된 에시드온이 전자 주가와 방개의 계단으로 잘 확산되는가
(2) 전자 주가와 전자 방개 계단에 도착한 에시드온들이 정공과 전자로 잘 분리되는가
(3) 분리된 전하들이 양극 및 음극에 잘 수신이 되는가

(1)의 과정을 살펴보면, 현재까지의 실험적인 결과를 토대로 에시드온 손실 없이 확산할 수 있는 거리는 10 nm 정도로 알려져 있다. 따라서 에시드온이 전자 주가의 도메인에서 형성된 후 확산할 경우 양방향으로 움직일 수 있을음을 고려하면 전자 주가의 도메인 크기는 최소 20 nm보다 작아야 할 것을 알 수 있다. 즉 (1)단계의 효율을 높이기 위해서 전자 주가의 도메인 크기가 20 nm보다 작아져 형성된 에시드온들이 무리한 손실 없이 전자 주가와 방개의 경계면에 도착해야 한다.25,26

(2)단계에서, 연구결과에 따르면 전자 방개로 플러렌 혹은 플라판 유도체를 사용하는 경우, 플러렌의 높은 전자 전화도로부터 전자 주가의 LUMO가 전자 방개의 LUMO보다 0.3 eV 이상 높을 경우 에산계에 도착한 에시드온들은 거의 100% 전하로 분리되기 있다고 보고 되었다.27-29 하핀 실험적으로 측정된 0.3 eV의 에너지는 에시드온의 결합 에너지 및 온도에 의해 전하들이 가질 수 있는 에너지에 해당하는지 등의 여러 가지 해석이 보고되고 있으나 아직까지 명확히 밝혀진 것은 없다. 한편 본 연구에서 전자 주가로 사용된 PCDTBT의 경우 LUMO 전자 방개로 사용된 PC_{61}BM의 LUMO 값보다 0.7 eV 이상 높다(그림 1b).

끝으로 (3)단계에서, 계면에서 분리된 전자와 정공은 각각 음극과 양극으로 이동해야 하는데 이때 정공은 전자 주가를 통해서 이동하고 전자는 전자 방개를 통해서 이동하게 된다. 그리고 에시드온과 달리 정공과 전자는 전하를 되고 있으므로 음극과 양극의 일체화 차이에 의해서 소자 내 에 생성된 전기장(built-in-electric field)에 의해 정공과 전자는 힘을 받게 되고 그로부터 전기장의 방향으로 가속된다. 따라서 이때 전자 주가의 정공 이동도(hole mobility)와 전자 방개의 전자 이동도(electron mobility)가 중요한 변수로 작용하며, 전자 주가와 전자 방개는 ‘dead-end’가 없이 엄밀한 percolated network를 구성해야 한다.

2.4 전자 주가 및 전자 방개의 모필로지 변화 연구
앞서 설명한 (1), (2), (3)단계를 종합해 보면 고분자 태양전자의 내부 양자효율을 증가시키기 위해서는 결국 전자 주가와 전자 방개의 나노크기의 수준의 모필로지 조절이 매우 중요한 변수임을 알 수 있다. 현재까지 많은 연구결과들로부터 전자 주가와 전자 방개의 이론적학의 모필로지적 분지구조, 온도의 선택 및 높도, 전자 주가와 전자 방개의 혼합비율, 적, 첨가재의 유무 등 많은 요인에 의해 영향을 받는다.30-34

본 연구에서는 전자 주가로 PCDTBT 콩크 고분자를 사용하였고, 전자 방개 물질로는 PC_{61}BM을 사용하였다. 일반적으로 사용되는 PC_{61}BM 대신에 PC_{61}BM을 전자 방개로 사용하면 더 높은 흡수율로부터 광 전류의 상승을 가시화할 수 있다. 그림3은 전자 방개로 PC_{61}BM과 PC_{70}BM을 사용했을 경우 전류-전압 특성곡선을 보여주고 있다. 이때 전자 주가는 PCDTBT이다. 그림3에서 알 수 있듯이 PC_{70}BM을 전자 방개로 사용한 소자의 경우 PC_{61}BM을 사용한 소자와 비교하여 개방 전압 및 FF는 비슷한 값을 보이지만 단단히 높은 광전류를 보인다. 개방전압의 경우 PC_{61}BM과 PC_{70}BM의 LUMO 값이 비슷하기 때문에 큰 차이를 보이지 않고 있으며, PC_{70}BM의 전자이동도 또한 PC_{61}BM과 비슷하여 FF에서도 큰 차이를 보이지 않는다. 다만 FF는
전하 이동도 뿐만 아니라 소자 전체의 내부저항에 의해 영향을 받고, 이들은 활성층의 모폴로지에 영향을 미치므로 소자제조사 조건에 따라 FF는 달라질 수 있다. 또한 PC₇0BM와 PC₇1BM의 분자 구조가 차이가 나고 세부 특성도 조금씩 다르기 때문에 최적의 소자 제조 조건 또한 조금씩 차이가 날 수 있다.

PCDTBT:PC₇0BM의 모폴로지를 조절을 통한 소자 성능 향상을 위하여 본 연구에서는 우선적으로 소자 제작 후 열(heat annealing)을 가하고 이를 통한 소자의 성능을 비교해 보았다. 소자 제작 후 열을 가해 모폴로지를 조절하는 연구는 P3HT를 기반으로 하는 고분자 태양전지에서 매우 유용하게 활용되는 방법이다. 그림 4는 새로 다룬 온도에서 열을 가한 소자들의 전류-전압 특성곡선을 비교해 주고 있다. 우리가 소자에 주는 100 °C와 120 °C의 열을 가해 받을 경우, 기대와는 달리 대부분의 소자의 경우 FF, 단락전류, 개방전압이 모두 감소하였고, 열을 가하지 않은 소자는 가장 높은 성능을 보였다. 그러나 일부 소자의 경우 열을 가함에 따라 성능의 향상을 보였는데 이런 소자의 경우 열을 가하지 않았을 때의 소자의 성능이 매우 낮았다. 따라서 우리는 이것으로부터 PCDTBT:PC₇0BM을 이용하는 소자의 경우, 열에 의해 쉽게 모폴로지를 조절할 수 있지만, 대부분의 경우 열을 가하지 않고도 높은 내부 양자효율을 보이는 모폴로지가 형성됨을 잡을 수 있다. 그리고 이러한 모폴로지는 열에 의해 내부 양자효율이 낮아지는 형태로 변하게 된다. 다만 초기 모폴로지의 형성이 최적화되지 못한 일부 소자의 경우 열을 이용하여 모폴로지를 변화시켜 효율을 다소 향상시킬 수 있다.

열을 이용한 방법 외에, 소자 제작과 전자 반개의 혼합 시 기판 용재 외에 끓는점이 높은 첨가제를 추가로 섞을 경우에도 혼합물을 모폴로지를 변화시킬 수 있다. 특히 최근 연구결과들에 따르면, PCDTBT와 같이 전자 주개전자 반개를 결합한 단위 섬유를 가지는 공액 고분자의 경우에는 이러한 모폴로지의 변화가 상당하게 일어날 수 있다고. 또한 특정한 첨가제의 경우 전자 주개와 전자 반개에 대한 용해도가 현저하게 차이가 나며, 이로부터 선택적으로 전자 주개 혹은 전자 반개를 녹일 수 있다. 본 연구에서는 세 가지의 첨가제인 octanethiol, dibromoacetanilide, diiodoacetanilide을 용해에 사용하여 PCDTBT:PC₇0BM 혼합물들의 모폴로지를 조정해 보았다. 그림 5(a)는 octanethiol, dibromoacetanilide, diiodoacetanilide 첨가제가 섞인 용매를 이용하여 제작한 PCDTBT 필름의 흡수 스펙트럼이다. 흡수 스펙트럼에서 알 수 있는 것과 같이 PCDTBT 만으로 이루어진 필름의 경우에는 다른 첨가제의 유무에 따라 흡수가 변하지 않는다. 그러나 PCDTBT:PC₇0BM의 혼합으로 이루어진 경우 결과는 달라진다. 그림 5(b)는 PCDTBT:PC₇0BM 필름을 octanethiol로 씻어내었을 경우(rinse) 흡수 스펙트럼의 변화를 보여주는데, 그림 5(b)에서 보이듯이 octanethiol은 PC₇0BM을 선택적으로 녹인다. 즉 혼합물 필름 위에 octanethiol을 씻어내면 혼합물 중 PC₇0BM만이 녹게 되어 결국 PCDTBT 필름만이 남게 되는 것이다.

그림 5에 보이는 AFM(atomic forced microscopy) 이미지는 PCDTBT:PC₇0BM 필름 위에 octanethiol을 씻어내었을 경우의 표면을 보여주는데, 그림 5(b)에서 보이듯이 octanethiol은 PC₇0BM을 선택적으로 녹인다.
어프린 후의 필름의 모폴로지를 보여주고 있는데, 첨가제의 유무에 따라 품질의 모폴로지가 매우 변화할 수 있음을 보여주고 있다. 따라서 첨가제를 첨가하는 방법을 이용하면 PCDTBT:PC_{70}BM 필름의 모폴로지를 조절할 수 있고, 이를 통해 원하는 전자 주기 및 전자 반개 혼합율의 모폴로지를 얻을 수 있다. 그러나 이 방법 또한 첨가제를 섞기 전 PCDTBT:PC_{70}BM 필름의 모폴로지가 매우 경우에에는 오히려 첨가제의 추가에 따라 PCDTBT:PC_{70}BM 필름의 모폴로지가 변경하여 더 좋지 않은 결과를 가져올 수도 있다. 그림 6(c)는 diithiol를 첨가하여 모폴로지를 조절한 후 소자를 제작하였을 경우의 전류-전압 곡선을 보여주고 있는데, diithiol의 첨가에 의해 계량전압의 상승을 가져왔으나, 광 전류 및 FF는 오히려 더 낮아짐을 알 수 있다. 따라서 첨가제를 사용하느냐에 따라 선택은 소자의 초기 모폴로 지가 어떻게 형성되느냐에 따라 판단해야 한다.

열 및 첨가제를 이용하는 방법이 다름에 반하여 고분자의 태양 전지 내의 활성층의 모폴로지를 변화시킬 수 있는 가장 일반 적인 방법은 활성층을 녹이는 용매의 선택과 전자 주기 및 전자 반개의 혼합비율의 조절이라 할 수 있다.32-33 용매의 선택은 용매가 증가시킨 후 형성되는 전자 주기 및 전자 반개의 도메인 크기에 영향을 끼치며, 전자 주기/전자 발개의 혼합도는 percolated network의 형성에 기여한다. 그림 7(a)-(d)는 TEM으로 살펴본 PCDTBT/PC_{70}BM(1:4) 필름의 모폴로지를 보여주고 있다. 그림 7(a)와 (b)에서 알 수 있듯이 용매로 클로로프로필(CF)과 클로로벤젠(CB)을 사용할 경우 필름 상에 200-300 nm 크기의 많은 염여리들이 관찰된다. 반면 다이클로로벤젠(DCB)을 용매로 사용하거나 혹은 다이클로로벤젠과 클로로벤젠(CCB)을 동시에 용매로 사용한 필름의 경우에는 매우 낮은 단백의 표면이 관찰된다(그림 7(c), (d)). TEM의 경우, 임의의 물질에 대한 전자의 투과도를 측정 하는 것이므로, PCDTBT에 비해 PC_{70}BM의 전자능도가 높은 높고, 높은 전자 능도는 TEM의 전자를 더 많이 산 랜시키는 점을 고려하면 그림 7(a)와 (b)에서 관찰되는 많은 염여리는 PC_{70}BM의 도메인을 잡각할 수 있다.34

한편, 어떤 경우에서든 염여리가 도메인을 형성할 수 있는 거리가 대략 20 nm 정도라고 생 각할 때, 클로로벤젠이나 클로로프로필로 만든 필름에서 보이는 이러한 200-300 nm 크기의 거대한 PC_{70}BM 도메인은 결국 염여리들이 소실 없이 전자 주기/전자 반개의 경계면에 도달시키기 어렵게 만들고, 이는 전하생성의 감소를 일으켜 소자의 광 전류의 감소가 시급할 수 있는데, 이는 그림 8을 통해서 확인할 수 있다. 그림 8(a)는 CF, CB, DCC 및 CB와 DCC를 혼합하여 제조한 PCDTBT:PC_{70}BM 태양전자의 IPCE 스펙트럼이다. TEM의 결과로부터 예상했듯이, CF와 CB의 경우 현저히 낮은 IPCE 값을 보이는 반면, DCC를 사용하여 제조한 소자는 높은 IPCE 값을 보인다. 그러려면 용매

![Image](image-url)
물체도 CB만을 이용하여 제작한 소자와 달리 CB과 DCB를 혼합하여 제작한 소자의 경우 DCB를 사용한 소자와 비슷한 IPCE 값을 보인다. 그리고 그림 8(a)를 살펴보면, CB/DCB의 혼합에서 DCB의 비율의 증가는 IPCE에서 400~450 nm부근의 세기를 증가시킬 수 있고, 이는 소자 전체의 광 전류 중에서 PC_{70}BM에 의해 생성되는 광 전류가 증가함을 알 수 있다. 이는 TEM에서 보여주는 PC_{70}BM의 도메인 크기의 나노스케일의 상관성의 모습을 통해 쉽게 해석할 수 있다. 또한 이러한 모폴로지의 차이는 전체적인 소자의 성능에도 직접적으로 영향을 주게 되는데, 이는 그림 8(b)에 나타난 흡수에 따른 소자들의 전류-전압 특성을 통해서 확인된다.

PCDTBT와 PC_{70}BM의 모폴로지와 PCDTBT와 PC_{70}BM의 혼합 비율에서도 매우 민감하게 변한다. 그림 9(a)-(d)는 PC_{70}BM의 비율에 따른 PCDTBT/PC_{70}BM 박막의 TEM 이미지를 보여주고 있는데, PC_{70}BM의 비율이 증가함에 따라, 'fibrillar' 구조의 PCDTBT 사슬의 모습이 점점 투명해지며, 잘 정리된 상관성이 관찰된다. 이 fibrillar 구조는 14 비율에서 가장활성화된 나노피질, 이것은 PC_{70}BM의 압축 증가시키는 것이 전체 구조의 network과 좀 더 긴고나은 pathway를 형성하게 하는 것을 의미한다. 소자의 활성층을 구성하고 있는 PC_{70}BM의 성분은 다른 구성성분인 PCDTBT 성분을 밀어낼 수 있는데, PC_{70}BM의 성분이 증가할 수록 이러한 효과는 커지게 되고 결과적으로 PCDTBT의 사슬이 잘 배열되어된다. 따라서 PC_{70}BM의 비율이 가장 높은 14의 비율에서 PCDTBT의 fibrillar 구조가 확장되게 나타난다.

PCDTBT는 PC_{70}BM에 비해 빛의 흡수율이 높기 때문에 PC_{70}BM의 비율이 증가할 수록 빛의 흡수율은 증가하게 된다. 빛의 흡수율이 증가하게 되면, 흡수된 에너지의 비율이 증가하게 되어 이것은 결국 소자의 광전류를 감소시킨다. 그러나 이와는 반대로 그림 9의 TEM 이미지에서 보여주는 것처럼 PC_{70}BM의 혼합 비율이 높아질수록 PCDTBT:PC_{70}BM 모폴로지의 점점 더 개선되는데, 이것은 빛의 흡수율에 의해 생성된 에너지들은 좀 더 효율적으로 전극으로 수렴할 수 있게 하여 소자의 광전류를 증가시키게 된다. 그림 10(a)는 PC_{70}BM의 혼합 비율에 따른 PCDTBT:PC_{70}BM 소자의 IPCE 스펙트럼을 보여주고 있는데, 1:1의 비율에서는 현저히 낮은 IPCE 값을 보이는 반면 1:2, 1:3, 1:4는 거의 비슷한 수준의 IPCE 값을 보여준다. 1:1의 경우에는 앞서 TEM 이미지에서 알 수 있듯이 빛의 흡수율은 높으나 빛의 흡수율에 의해 생성된 에너지들이 전극으로 수렴하기에는 상관성이 약하여 network가 제대로 이루어지지 않았고, 이로부터 광 전류가 매우 감소하게 됨을 알 수 있다. 반면 PC_{70}BM의 양이 점점 더 증가할 경우 빛의 흡수율에 의해 생성되는 에너지들의 양은 감소하지만 생성된 에너지들이 전극으로 수렴되는 전하의 양은 증가하게 되므로 거의 비슷한 광 전류의 값을 보인다. 그러나 FF의 경우는 모폴로지에 보다 민감하게 반응하므로 PC_{70}BM의 양이 증가할수록 더 높은 수치를 보이
2.5 내부 양자효율 측정

PCDTBT/PC_{60}BM의 모폴로지를 변화시키고 이로부터 최적의 조건을 구하여 태양전지를 제작하였다. 그리고 소자의 흡수 스펙트럼과 IPCE를 데이타를 비교함으로써, 소자의 내부 양자효율을 계산하였는데 그 결과가 그림 11(a)에 나타나 있다. 놀라게도 PCDTBT와 PC_{60}BM 소자의 내부 양자효율 스펙트럼을 보면 알 수 있듯이 소자의 내부 양자효율이 전 영역에 걸쳐 90% 이상의 값을 보이고 있다. 내부 양자효율의 정의가 흡수되는 광자 수에 대한 수집되는 전하들의 수의 비율임을 고려한다면 90% 이상의 내부 양자효율이란 흡수되는 거의 모든 액시온들이 전자와 정공으로 분리되고, 또 분리된 이들 전하들이 모두 전극에서 수집됨을 의미한다. 이것은 고파차 태양전지가 간단한 스위프트과정을 이용하여 제작하는 점을 고려한다면 매우 놀라운 결과이다.

한편, 이론적으로 내부 양자효율이 매우 높을 경우 태양 전지를 역방향으로 바이어스시키더라도 광전류를 향상시키는 것은 거의 불가능하다. 왜냐하면 역방향의 바이어스를 인가하면 내부에 형성된 전자와 정공들보다 쉽게 전극으로 수집될 수 있게 해 준다 하더라도, 소자 내에 형성된 거의 대부분의 전자와 정공들이 역방향 바이어스의 도움 없이 이미 전극으로 수집이 되어 소자 내에는 더 이상 짝지어질 전자와 정공이 없기 때문이다. 그림 11(b)는 역방향의 전압을 가했을 경우의 전류-전압 곡선을 보여주고 있다. 역방향의 전압을 가했을 경우 전체 전류는 빛에 의해 생성된 광 전류와 함께 전극으로부터 주입된 전류도 포함하기 때문에, 우리는 간단히 전체 전류에서 빛이 없는 상태(dark condition)부터 주입된 전류를 차감하여 빛에 의해 만들어진 광전류를 계산하였다. 그림 11(b)에서 보이듯이, 광 전류(정색)는 0 V 이하에서 평평한 곡선을 보이며, 이는 역방향의 전압에 의해 광 전류가 증가되지 않았음을 의미한다. 역방향에 의해 광 전류가 증가되지 않는다는 사실은 앞서 우리가 예상한 결과와 일치하며, 이것은 높은 내부 양자효율을 가지는 소자가 매우 높은 내부 양자효율을 가지며, 우리가 앞서 제시한 내부 양자효율 값이 타당함을 틀림없이 증다.

2.6 AM 1.5G 조건에서 소자의 에너지 전환효율

AM 1.5G에서 정확한 PCDTBT/PC_{60}BM 소자의 에너지 전환효율을 구하기 위하여 우리는 그림 12에서 보여 주는 방법으로 aperture를 사용하여 소자의 전류-전압 곡선을 측정하였다. 소자의 에너지 전환효율은 입사되는 빛의 세기와 소자의 전류-전압곡선으로부터 측정되는 단락
그림 12. 본 연구에서 사용된 소자의 에너지 전환 효율 측정 방법 개요.

그림 13. PCDTBT:PC_{70}BM의 전류전압 특성(a) 및 NREL에서 검증된 에너지 전환 효율(b).

전류, 개방전압, FF 값에 의해 결정되어지기 때문에 무엇보다 정확한 측정 값을 얻어야 한다. 측정 시 aperture를 이용하면, crosstalk, waveguiding 효과 등과 같은 실험적 오류를 줄일 수 있다. 하지만 aperture의 크기와 소자의 활성층의 크기가 매우 작을 경우 FF와 개방전압이 변하기 때문에 주의해야 한다.37,38

그림 12에서 보여주는 방법은 바탕으로 보정된 실리콘セル을 이용하여 100 mW/cm\(^2\)의 세기를 가지는 솔라시뮬레이터로 소자의 전류-전압곡선을 측정하였다는데, 그 결과가 그림 13(a)에 나타나 있다. PCDTBT:PC_{70}BM 소자는 각각 \(J_{sc}=10.6 \text{ mA/cm}^2\), \(V_{oc}=0.88 \text{ V}\), \(FF=0.66\)을 보여주고 있으며 이로부터 계산한 에너지 전환효율은 6.1\%를 보였다. Anti-reflecting 물질이 코팅되지 않은 PCDTBT:PC_{70}BM 소자 중에서 6.1\%의 값을 보이는 소자의 수명을 1주간 관찰하였고 그 이후에 소자의 효율 감소를 위하여 NREL(National Renewable Energy Laboratory)에서 측정한 데이터와 함께 소자를 보냈다. 약 3주 후에 NREL에서는 그림 13(b)에 보여진 5.96\%의 효율을 인증해 주었다. 이 수치는 우리가 NREL에 보낸 이후 NREL이 측정할 때까지의 시간차와 간단한 페키징만을 이용한 점을 감안하면 우리가 당초 측정한 효율에 매우 근접한 수치라고 할 수 있다.

3. 결론

우리는 여기서 PCDTBT를 전자 주개로 사용한 고분자 태양전지에 대해 기존에 발표된 논문들과 새로운 데이터를 병합하여 소자의 제작조건 및 특성에 대해 전반적으로 논의하였다. 특히 전자 주개인 PCDTBT와 전자 발개인 PC_{70}BM의 모폴로지를 조절하여 내부 양자효율을 개선할 수 있는 방법을 중심적으로 다루었으며, 적절한 모폴로지의 조절을 통해서 내부양자효율을 극대화시켜 약 100\%에 근접하는 내부양자효율을 획득하였고, 6\%이 넘는 에너지 전환효율을 달성하였다. 태양전지의 내부양자효율은 100\%에 근접한다는 것은 흡수된 모든 에너지의 전자가 전공으로 모두 분리가 되어, 본리절 모든 전차와 정공들이 각각 전극으로 수지는됨을 의미하고, 이는 고분자 태양전지의 발전 가능성을 단적으로 보여준다. 다시 본 연구에서 리튬한 PCDTBT:PC_{70}BM의 소자의 두께가 단지 80 nm이던 광 흡수율이 높고, 투명 증가 시 내부 양자효율이 현저히 낮아짐을 고려한다면, 아직도 상당한 연구를 통한 소자 효율 개선이 가능하다.

참고문헌