한외여과막의 개발 및 응용 현황

오상열·최기석

1. 서 론

최근 각 하천의 수질, 폐기물 처리 문제 및 GR (Green Round) 등 환경보존에 대한 사회적 관심도가 증대되면서 환경 보존을 해결하기 위한 새로운 기술이 개발되어지고 있으며, 이에 따라, 향후 환경관련 산업이 성장 유망 업종으로 부각되고 있다. 또한, 앞으로 정부는 환경규제 정책이 점차 강화되어 지면 관련 기술 및 설비 등의 시장이 신장될 것으로 판단된다.

분리막에 의한 분리공정은 전형적인 분리 방법인 중류, 추출 등에서와 같이 상변화가 없이 고도 미세 분리 정제가 가능하도록 기존의 에너지 다소비형 공정과 비교시 상당량의 에너지를 절감할 수 있으며 또한, 그 원리 및 공정이 간단하여 새로운 첨단 기술의 하나로서 에너지 절약, 자원 절약, 환경보존 등의 측면에서 유리한 것으로 평가되고 있다. 그리고, 국내 생활 수준의 향상으로 고순도, 고기능성 물질의 사회적 요구가 증대되어, 고정제, 고효율 분리 기술이 요구되어지고 있으며 여기에 분리막을 이용한 분리공정이 각 산업에 필수적으로 적용되고 있는 추세이다.

이중 한외여과막을 이용한 한외여과방법은 반도체 또는 정밀 액물, 역상투법과 같이 조합되어 사용되면서 각 분리공정에 적용이 확산되어 주목받고 있는 분야이다. 국내에서는 반도체 제조용 초순수의 제조 및 자동차 전자도로의 회수 설비에 이용되어 오다가 근래에 들어 우수한 가공, 음료의 제조 등 식품산업에서의 이용이 증가되고 있다.

본고에서는 한외여과막의 개발 동향과 현재 각종 산업에 응용되고 있는 현황을 살펴보고자 한다.

2. 한외여과막(限外濾過, Ultrafiltration)

한외여과는 반투투를 이용하여 용액내의 물질을 크기에 따라 분리하는 방법으로 약 1~7 kg/cm²의 압력을 구동력으로 하여 분리가 이루어진다. 이때 사용되는 한외여과막은 선택성을 지닌 Barrier 역할을 하며 10-1000Å 정도의 구멍크기를 지닌 구조로 1되어 있어 그림 1에 나타낸 바와 같이 Suger, Biomolecules, 플로이드 입자 및 고분자 등의 300~500,000 Daltons 정도의 분자량을 지닌 물질(Macromolecules)은 배제(Rejection)시키고 반면에 작은 분자량(Small molecules and Solvent)물질은 자유로이 두부가 가능하다.

일반적으로 한외여과막 분리 대상 물질 중 최소분자량의 물질이 90% 이상 배제될 때를 분확 분자량(分割分子量, Molecular Cut off, MWCO)로 표시하여 grade를

---

Current Status of Development and Application of Ultrafiltration Membranes

코오토그룹 증상연구소(Sang Yeol Oh and Kie Seok Choi, Kolon Group Central Research Institute, San 207-2, Mabuk-Ri, Guseong-Myun, Yongin-Gun, Kyunggi-Do, 449-910, Korea)
구분하는 데 공업적으로 보통 MWCO가 2,000~60,000의 맥이 가장 많이 사용되고 있다.

한의외막으로 사용하기 위해서는 다음과 같은 특성이 요구된다.
1) 분리성능 분획분자량 범위
2) 두상성능: 단변면적당, 단시간당 두유량(Flux)
3) 내구성능: 내유세정, 내입성, 기계적 강도 등의 실용성의 수명

표 1에 한의외막으로 사용되는 고분자 소재를 나타낸 바와 같이 1960년대 초 폴리에틸렌플렉스(Polioncomplex) 등 소재로 한의외막이 개발된 이래 지난 30여년간 각종 고분자 소재를 이용하여 한의외막이 제조되고 있는 데 주로 폴리로코스 아세테이트 계열이 많이 사용되어 왔다.

현수성 고분자는 한의외막 소재로 사용하기가 어려운데, 루어 공성관막내에 함유된 물 분자가 가소액 혈액을 하여 맥의 손익성 및 기계적 강도를 저하시키는 문제가 있다. 또한, 맥 소재 선택시 소재 고분자의 분자량 크기 및 분포에 대한 고려가 필요함에 Kesting은 분자량에 따른 맥의 특성 변화에 대한 연구에서 맥 제조사의 힘과 전문가의 지식을 바탕으로 제조소를 선정해야 한다는 결과를 제시한 바 있다. 한의외막은 정밀외막보다 구명계가 적으며 구명계를 조절하기가 쉬운 비결정성 고분자(フループPolymer이면서 Tg가 비교적 높은 고분자를 이용하는 경우가 많다. 이러한 소재 제조 기준에 따라 균이에 들어 폴리실린이 용해에 대한 내지성형이 다소 약하며 내밀성, 내유H성, 우수한 기계적 성질에 의해 한의외막 소재가 많이 사용되고 있다. 반면에, 폴리아크릴시트는 현수성 소재임에도 불구하고 유용히 처리되어 내유세정, 내화학성이 우수하고 단백질 흡착이 적게 일어나므로 한의외막으로 개발되어 사용되고 있다.

그러나 고분자 소재로서는 상기와 같은 요구특성을 모두 만족하기는 어려우므로 표 2에서 같은 세라믹 계열의 두 기소재를 이용한 한의외막이 일부 개발되어 상용화되어 있기는 하나 맥 제조 비용이 고분자 소재보다 많이 들어 넘치 사용되지 못하고 있는 실정이다.

한의외막에서 요구되는 성공은 응용 분야에 따라 일부

![Graph](Image)

**표 1. 한의외막 제조용 각종 고분자 소재**

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Chemical structure</th>
<th>Tg/°C</th>
<th>Tm/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene (PE)</td>
<td>-CH₂-CH₂-</td>
<td>-60~90</td>
<td>137~143,5</td>
</tr>
<tr>
<td>Polyvinylidene fluoride (PVDF)</td>
<td>-CH₂-CF₂-</td>
<td>40</td>
<td>160~185</td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>-CH₂-CH₂-CH₂-</td>
<td>-113</td>
<td>327</td>
</tr>
<tr>
<td>Polycarbonate (PC)</td>
<td>-CH₂-CH(OH)-CH₂-</td>
<td>150~155</td>
<td>240</td>
</tr>
<tr>
<td>Teflon</td>
<td>-CF₂-CH₂-</td>
<td>-113</td>
<td>327</td>
</tr>
<tr>
<td>Cellulose acetate (CA)</td>
<td>-</td>
<td>-</td>
<td>230</td>
</tr>
<tr>
<td>Polyethersulfone (PES)</td>
<td>-</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Polysulfone</td>
<td>-</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Polyvinylalcohol (PVA)</td>
<td>-CH₂-CH(OH)-</td>
<td>65~85</td>
<td>228~256</td>
</tr>
<tr>
<td>Polycrylonitrile (PAN)</td>
<td>-CH₂-CH(CN)-</td>
<td>80~104</td>
<td>319</td>
</tr>
<tr>
<td>Polyphenylenesulfide (PPS)</td>
<td>-</td>
<td></td>
<td>85</td>
</tr>
</tbody>
</table>

**표 2. 상용화된 세라믹 맥의 종류**

<table>
<thead>
<tr>
<th>제조회사</th>
<th>맥 형태</th>
<th>재질</th>
<th>구명 크기 (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.F.E.C.(프)</td>
<td>Tubular</td>
<td>ZrO₂/C</td>
<td>0.002~0.15(UF, MF)</td>
</tr>
<tr>
<td>Ceraver(프)</td>
<td>Multitubular</td>
<td>Al₂O₃/Al₂O₃</td>
<td>0.004~5.0(MF)</td>
</tr>
<tr>
<td>Norton(미)</td>
<td>Tubular</td>
<td>Al₂O₃/Al₂O₃</td>
<td>0.2~1.10(MF)</td>
</tr>
<tr>
<td>Nihon gasahi(일)</td>
<td>Tubular</td>
<td>Al₂O₃/Al₂O₃</td>
<td>0.2~5.0(MF)</td>
</tr>
<tr>
<td>Carre/DuPont(미)</td>
<td>Tubular</td>
<td>ZrO₂/C</td>
<td>Dynamic membrane</td>
</tr>
<tr>
<td>TDK(일)</td>
<td>Tubular</td>
<td>Al₂O₃/Al₂O₃</td>
<td>Dynamic membrane</td>
</tr>
<tr>
<td>Shott biotech(독)</td>
<td>Capillary</td>
<td>Al₂O₃/Al₂O₃</td>
<td>0.01~0.09(UF, MF)</td>
</tr>
</tbody>
</table>

Polymer Science and Technology Vol. 5, No. 2, April 1994
2.2 내 기용제제조

화학 공정에서의 각종 기용제의 혼합물을 분리하기 위해서는 무엇보다도 각종 용매에 흡착되는 맥이 필요합니다. 내 기용제제조에 이용되는 고분자소재는 여러가지가 있으나 이들 고분자를 용매에 더한 액체에 적어 casting법에 의한 제조이론이 고려하였다. 그러나, 최근 개발된 각종 산성

이론을 개발하여 실험 가능성이 있는 수준의 맥이 개발되어 일부 시험되고 있다.

Zschokke와 Strathamann은 Du Pont사의 방향으로Billy 아미드인 폴리-피로레프탈아미드를 농합의 용

용매에 대한 액체 용매도(압력 5 기압 기준)를 측정하여 용매에 대한 내구성이 있는 결과를 보였다. 또한 Iwama와 Kazuse는 그림 3과 같은 구조의 1,2,3,4-부탄테트라카
로분과 방향로워터 다양한 크로스 접합으로 폴리아미드를 합성하여 NMP에 용해한 후 적당한 점거율을 가하여 제제료를 제조한 후 합성으로 제조하였다. 이를 기초로 하여, 현재 일본 NIT 및 Ciba-Geigy의 폴리아미드 XU-218을 이용하여 N,
N-메틸아세트아이드(DMAc) 용액으로 네가용계성 및 내열성을 동시에 향상시킨 한의여과막을 제조하였다.

2.3. 하전형 한의여과막
Fridrich 등은 Udel-1700 폴리실론에 클로로실론산 (CISO₃H)을 이용하여 실론화 폴리실론으로 된 한의여과막을 제작하여 Dextan 및 각종 무기 전하질의 배체 성능을 측정하여 약의 하전효과를 검토하였다. Ida 등은 폴리실론 지지층 위에 실론화 폴리에테르실론 활성층을 지닌 하전형 복합막을 개발하여 하전효과에 의한 음직 배체 실험 결과를 보고 하였으며 이는 일본의 NTU-7140로 시행되고 있다. 이와도, 아크릴로니트릴과 메틸실론산나트륨의 공용합체로 된 하전막 폴리실론과 폴리에틸렌옥사이드의 하전 한의여과막 폴리스테레실론산을 코팅한 막, 실론화된 폴리에틸렌플루오라이드막(PVDF) 등에 관한 연구가 보고되어 있다.

2.4. 단백질 저항한 한의여과막
한의여과막의 단백질, 효소 및 항생물질 등을 분리하는 생명공학, 식품, 의약산업의 용도가 확산되면서 면역시 단백질이 막 표면에 충돌되어 두파 속도를 저하시키는 문제에 대한 해결 노력이 중요시되고 있다.

일반적인 한의여과막은 막 표면이 소수성으로서 막보면과 단백질간의 Hydrophobic Interaction에 의해 고수성막 보다는 단백질의 축적이 잘 된다고 알려져 있다. 13-14 생물로즈마이데나트 또는 폴리비닐알코올 또는 폴리아크릴로마트 같은 증수성 소재로 된 막은 단백질에 대해 저항성을 (Low-Probability)을 보이며 내열성 및 기계적 강도 등의 문제가 있다. 따라서 PVDF나 폴리실론 등의 내열성 내화학성이 좋은 소수성 고분자로 수성으로 개발하여 단백질 축적이 적은 한의여과막을 제조하기 위한 연구가 진행되어 있다. 그림 4와 같이 시도되고 있으며, 표 4에 폴리실론 표면을 개발하는 여러 가지 방법이 나타내었다.

2.5. 새로운 한의여과막의 개발
새로운 고분자 소재로 된 한의여과막에 대한 연구는 매년 증가되어 보고되어 오지만 실용화가 된 막 소재는 그다지 많지 않다.

특히, 샘플로즈마계는 예전부터 한의여과막으로 많이 사용되어 오고 내열성 및 내수용계성에 한계가 있어 이를 개선하려는 노력이 이루어지고 있다. Gobayashi 등은 샘플로즈마를 메탈아세트아이드-염화나트륨 용액으로 용해한 후 코팅용액을 묻어 고수성으로서 단백질 축적이 적은 한의여과막을 제조하였다. 그림 4의 a, b, c, d, e는 각각 다소 다른 제조조건에 따라 분리된 후의 분자량이 다른 단백질을 대상으로 한 실험을 실시한 결과를 보고하였다.

그림 4. 폴리실론 고분아의 개정방법．

表 4. 폴리실론막의 개정 방법의 종류

- Physical modification
  1. Adsorption of polymer on membrane surface
  2. Adsorption of surfactant on membrane surface
  3. Plasma treatment
  4. Radiation-induced graft polymerization
  5. Surface reaction
    1. Sulfonation
    2. Friedel-crafts reaction

Polymer Science and Technology Vol. 5, No. 2, April 1994
테이트게의 막이 개발되었다.16 그리고 천연 샬롬로즈와 유사한 구조를 지닌 카친계 고분자를 이용한 한외여막 개발이 진행되어 재생 샬롬로즈에 비해 인장강도 2배, 투과속도 및 비타민 B12의 투과공수가 각각 7~14배, 1. 9~2.5배 증가된 성능을 보여 협력여막으로의 이용이 기대되고 있다.

3. 한외여막 모듈(Module)

막을 분리공정 시스템에 장착하기 위해서는 모듈로 만들어서 사용하는데 한외여막 모듈들은 표 5와 같이 크게 4 종류의 형태가 있다.17 각각 장·단점이 있으므로 용도에 맞게 선택 사용되어야 한다. 예를 들어, 폐수처리용인 경우 SS 및 활성 오니 등이 처리되므로 막의 누수 방지 및 세정 용이성을 고려할 때 일반적으로 평판형 또는 관절형 모듈을 사용하는 것이 적절하다. 이외에도 실제 각 운영 조건, 조작 방법에 따라 또는 처리 대상 물질의 종류에 따라 충분한 검토가 이루어져야 한다. 그림 5에 한외여막 모듈을 개발시 고려되어야 할 항목을 나타내었다.

4. 한외여막의 응용 현황

한외여막은 표 6에서와 같이 각종 공정에서의 분리 농축, 공업용수의 제조 및 폐수처리, 의료산업 등 각 산업 분야에서 광범위하게 이용되고 있으며 최근에는 청정음료, 고기능성 식품의 가공 및 제조 등의 식품산업 및 각종 고 가의 유용물질을 고용율로 제조하기 위한 생물공학 분야

| 표 5. 한외여막 모듈의 종류 및 비교 |
|-------------------------|-------------------|
| 항목 | Plate-flat | Tubular | Hollow fiber | Spiral wound |
| 구조 | 판 형태로 작중 | φ4～5 mm판 | φ 1 mm 이하의 중공사슬 수천가닥 접속 | Spacer 사이에 패밀로 길다 |
| 특성 | 모듈에 처리가능(범용성) | | 부유물 다양 항유액 처리에 근한 |
| 막 세정법 | 약품제거 불가 | 약품 제거 불가 | 약품 제거 불가 | 약품 제거 |
| 실질소요공간 | 비교적 적은 공간 가능 | 공간 차지 | 적은 공간 차지 |
| (응용 분야) | 전작도포 회수 | | | |
| | 식품공업 | | | |
| | 종수도 | | | |
| | 순수제조 | | | |

| 표 6. 한외여막의 응용 현황 |
|-------------------------|-------------------|
| 적용 분야 | 처리 대상 물질 |
| Electrophoretic paint | Process rinse water, recycle paint to dip tank, allow reuse of rinse water |
| Cheese whey | Concentrate/fractionate proteins from lactose and inorganics |
| Juice clarification | Remove haze components from apple juice |
| Textile sizing agents | Recover polyvinyl alcohol after scouring of woven goods |
| Wine clarification | Remove haze components from red and white wines |
| Oil/water emulsions | Metal cutting oils/lubricants) concentrated from wastewater for incineration |
| Polymer latex | Latex emulsions concentrated from wastewater |
| Dewatering | Separation of wax components from lower paraffins |
| Deasphalting | Solvent recovery/recycle for deasphalting of heavy crude |
| Egg-white precedence | Partial dewatering before spray drying |
| Fermentation broth | Separate low molecular weight organics/therapeutic agents from cells or cell debris |
| Kaolin concentration | Partial dewatering of clay slurry before centrifugation |
| Water treatment | Concentration before sludge dewatering |
| Affinity membranes | Retain ligand complex from noncomplered proteins |
| Reverse osmosis pretreatment | Retain colloidal silica, bacteria |

그림 5. 한외여막 모듈의 개발과정.

고분자과학과 기술 제 5권 2호 1994년 4월 119
등에의 사용이 증가되고 있는 추세이다.

4.1 전착도료 회수
전착도장은 전착도장에 도장하고자 하는 피드백을 담고 수용성 도료에 전압을 가하여 피드백의 급속히도 도료를 섞어서 도장하는 방법을 말하며 자동차 본체, 가전제품 및 건축재 등의 하도 도장으로 이용되고 있다. 일반 스프레이 도장 방법에 비해 도막이 견고하고 연속적으로 대량생산이 가능하며 인간이라 적게 든는 장점이 있어 사용이 증가되고 있다. 이때 사용되는 전착도료는 가격이 고가이므로 도장후 수세 과정에서 유출되는 도료를 회수하여 재사용하지 않으면 경제성이 없다. 그림 6과 같이 왜머리 피막을 이용하여 처리하면서 농축된 도료 및 냉각액을 모두 재사용 가능하다.

4.2 반도체용 초순수 제조
그림 7과 같이 초순수 제조설비의 채용장치에 환외막을 조합하여 박테리아 등을 함유한 미립자 등을 제거하는데 사용되는데, 보통 분획기와가 수천 정도의 막을 사용하여 크기가 0.1μm 정도의 미립자를 완전히 제거하기 위해 적용되고 있으나, 공정상에서 0.1μm 이상의 미립자가 수개/㎖가 검출되었기 때문에 문제가 있다. 특히 전공이 가하여 겸용시 미립자의 발생이 증가되는 현상을 보이는데 이는 환외막과 제조 공정에서 미립자가 오염된 것으로 판단되고 있어 압력, 연평 및 유량 영향에 의해 미립자가 발생되지 않는 환외막과 모듈이 요구되어 지이고 있다. 이러한 문제점은 해결에 위해 활성층이 내의면 양쪽에 형성된 Double Skin Layer 구조를 지닌 공정시스템 형태의 모듈 사용에 대한 연구가 시도되고 있다.

4.3 오일 함유 폐수의 처리
전세계적으로 각 산업에서 오일이 함유되어 있는 폐수가 하루에 수십만 리터씩 배출되어 수질을 오염시키는 원인이 되고 있다. 이러한 오일함유 폐수는 유리(dirt, free-floating oil)에 오일, 불안정한 오일에서분 및 안정한 오일에 분리된 3가지로 분류할 수 있다. 유리오일은 중력에 의한 물리적 방법으로 쉽게 제거가 가능하고, 불안정한 오일은 화학적으로 분해시킨 후 부설시켜 제거 분리할 수 있으나, 안전한 상태의 오일 예방선. 특히 수용성 오일 폐수는 처리가 매우 복잡하다.

국내에서는 오일함유 폐수 발생 업계에서 그대로 처리 전문 업계에 위탁하여 처리하고 있는 실정이다. 이러한 공정에서 환외막을 이용하여 처리하였음 최소량의 부패로 오일을 농축한 후, 소각 처리하거나 전문 처리업체에 위탁하여 처리 비용을 감소시킬 수 있다. 이 오염이 심각하게 되는 경우면 세척하기 위해 Ball Freshening이 가능한 관상형 모듈을 사용하여 모듈의 수질을 연장시키는 공정이 개발되어 있다.

4.4 섬유공업에서의 호제 회수
섬유 공업에서 섬유의 표면특성 및 강도를 개선하기 위해 호제(Sizing agents)를 사용하는데 보통 폴리비닐알콜(PVA)이나 카르복시 메틸셀룰로오스(CMC) 등이 사용된다. 이 호제는 직물의 염색하기 전에 세척(desizing)하는 공정이 필요하다. 이들 호제는 고가이며 생분해가 되지 않아 폐처리 및 희수에 의한 재사용이 검정받은 분야이다.

일반적으로 desizing된 폐수에는 약 0.5~1.5% 정도의

![Diagram](image)

그림 6. 환외막을 이용한 전착도료 회수 공정 개념도.

---

*Polymer Science and Technology Vol. 5, No. 2, April 1994*

120
호제가 함유되어 있는데 그림 8에서와 같이 한의약과목을 이용하여 10% 이상 농축, 최수하여 재사용하기 위한 공정이 개발되어 있는데 농축한 호제를 재사용함과 동시에 투과수도 다시 세정술로 보내어 재사용할 수 있다.

4.5 식품공업에서의 한의약과목의 이용

식품공업에서 한의약과목 처리기술이 가장 많이 이용되고 있는 분야는 낙농 가공 분야이다. 특히 육아용 분유제조에 있어서 치즈 whey처리에 역할과 같은 기능을 이 과정에서 수행한다는 점에 있다. 치즈 whey에는 보유가치가 높은 양질의 단백질과 유당이 함유되어 있기 때문에 상용을 이용한 처리기술이 필요하다. 유럽 지역에서는 한의약과목을 이용한 처리기술이 연구부터 개발되어 식품공장 장비에 요구되는 위생성을 갖추고 자동제어 기능이 완비된 장치가 개발되어 식품산업의 단위조작의 하나로 정착되어져 있다.

4.5.1 발효공업

기존의 발효공업을 포함하여 유전자 조작 및 세포배양 등 신기술의 생물공학 기법에 의한 발효 관련 기술로 그림 9와 같이 각 분야를 개발할 수 있는데 각 공정에서 같은 분야에 한의약과목을 사용할 수 있다. 주의할 점은 같은 분야를 위해 프러스 필터, 허실분리 등을 이용하였으나 한의약과목을 이용하면 다음과 같은 장점이 있다.19

1) 농축과 정제가 동시에 진행
2) 처리비용을 사용하지 않아도 된다
3) 갈이 습직기는 비용으로서 이용 가능

4.5.2 포도주의 정제

한의약과목을 이용하여 포도주 내의 흉터물질 및 잔당 등을 제거하면 향기가 없어지지 않고 풍질적으로 안정하여 사용할 수 있다.

그림 10. 한의약과목을 이용한 분리처리 시스템 공정도.

상온에서의 유통이 가능한 포도주를 제조할 수 있다. 표 7에 포도주를 30일간 보존하여 보존 전후의 글루코오스 변화 정도를 측정한 결과 한의약과목으로 처리한 포도주가 글루코오스/전당 비율의 증가분이 제일 적은 수치를 얻을 수 있다.19

4.5.3 식육가공 공정수에서의 유가문 희수

한의약과목을 이용하여 식육 가공상 윤활을 처리하고 납 짜출수 중에서 단백질을 고도로 농축하는 장치가 개발되어 사용되고 있다. 관상형 한의약과목을 사용하여 2단 농축 방식을 채용할 경우 1단계에서 1%의 단백질이 5%로 농축되며 2단계는 20%까지 농축이 가능하다.20

4.5.4 간장의 탈색

일본에서 한의약과목을 이용하여 색이 없는 간장을 제조하는 기술은 개발하였는데, 흔히 알려져 있는 한의약와목 처리방법이 완전 오장 간장과는 탈색이 있으나 간장은 완전히 탈색시키기 어렵다는 점을 정화시킨 후 활성산이 다시 동판시켜 무색 간장을 제조하였다.21

4.6 분노의 처리

일반적으로 분노의 처리는 수막 필터로 갈물을 제거한 후 유기물 분해, 소화, 탈질소가 물합이 함유되어 있는 환경오염 분노중의 유기물을 99% 이상 분해한 후 이를 침강 분리 등의 고정 분리법으로 처리하고 여과된 액을 활성탄에 환색, 백색 과정을 거쳐 하천에 방류시킨다. 이와의 한의약과목을 활성산이나 두폭액을 분리하려는 목적으로 주공정에 사용될 수 있다.

그림 9. 한의약과목과 생물공학 기법에 의한 식품 및 의료 관련 제품.

表 7. 보존 전후의 포도주 당도 분석

<table>
<thead>
<tr>
<th>구성</th>
<th>글루코오스 (mg/ml)</th>
<th>환원당 (mg/ml)</th>
<th>전당 (mg/%)</th>
<th>글루코오스 (전당)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>보 미처리</td>
<td>39.8</td>
<td>44.5</td>
<td>61.0</td>
<td>65.2</td>
</tr>
<tr>
<td>준 UF처리</td>
<td>37.8</td>
<td>42.4</td>
<td>57.9</td>
<td>66.3</td>
</tr>
<tr>
<td>건 농축</td>
<td>40.0</td>
<td>45.7</td>
<td>61.2</td>
<td>66.4</td>
</tr>
<tr>
<td>보 미처리</td>
<td>42.4</td>
<td>46.5</td>
<td>69.5</td>
<td></td>
</tr>
<tr>
<td>준 UF처리</td>
<td>39.1</td>
<td>43.4</td>
<td>67.5</td>
<td></td>
</tr>
<tr>
<td>후 농축</td>
<td>45.1</td>
<td>49.4</td>
<td>73.7</td>
<td></td>
</tr>
</tbody>
</table>

고분자과학과 기술 제5권 2호 1994년 4월 121
의의과학을 사용, 석유화학공업이나 석물공업에서의 추출 공정에서 사용된 유와의 혼합으로 비유용약제에서의 유기화합물을 분리에 한의과학적 적용이 연구되고 있으며, 한의과학적표면에 오염된 고분자량의 탄화수소를 재처리하는 기술이 개발되어 고분자량의 탄화수소에서 저분자량의 탄화수소를 분리하는 시스템 개발이 진행되고 있다.

5. 몇 음 맛

한의과학에서의 현대 가장 문제가 되고 있는 표면에서의 오염이 적게 되는 막 저체의 개발 및 오염된 마음을 운전중 손상된 세포가 가능하기 위한 모듈 및 시스템의 설계, 보다 극한 환경에서도 사용할 수 있는 소재의 개발 등, 아직 기술적으로 발전해야 할 과제들이 많이 남아 있으나 지금까지 삼려 보았듯이 한의과학을 이용한 분리기술은 아직 산업 전반에서 이용할 수 있는 공업기반 기술로서 펼쳐져지고 있으며, 왕후 환경보존을 위한 하나의 해결 수단로서도 인정될 수 있는 기술이다. 또한 새로운 소재 및 제조 기법이 개발될 때마다 새로운 응용이 창출되리라 생각된다.

이러한 한의과학 분리기술은 그림 12와 같이 전산계에서는 일부 상장기에서 상속하기 쉽고도 있으며23) 국내의 경우, 이제야 각 산업에서 조급식 적용되어지고 있는 실정이다. 전자는 아직 국내에서 본격적으로 분리가 생산되어 지지 않기 때문에 분리가 되지 않으나 외국에서 모두 수입해야 하고, 기존의 분리공정 시스템을 대체하기 위한 노력을 이어받아 연구되어 전한다.

그림 12. 한의과학적 분리 기법

그림 12. 한의과학적 분리 기법

상기 서술된 분야 외에도 Membrane Reactor에의 한

표 8. 중수도 처리 수질

<table>
<thead>
<tr>
<th>항목</th>
<th>원수(mg/l)</th>
<th>중수(mg/l)</th>
<th>제거율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5～8</td>
<td>6.8～7.3</td>
<td>-</td>
</tr>
<tr>
<td>SS(ppm)</td>
<td>100～300</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>색</td>
<td>50미터 이상</td>
<td>15미터(투명)</td>
<td>100</td>
</tr>
<tr>
<td>잔류</td>
<td>오염범위</td>
<td>무취</td>
<td>-</td>
</tr>
<tr>
<td>BOD(ppm)</td>
<td>150～350</td>
<td>30이하</td>
<td>90이상</td>
</tr>
<tr>
<td>COD(ppm)</td>
<td>100～250</td>
<td>20이하</td>
<td>90이상</td>
</tr>
<tr>
<td>ABS(ppm)</td>
<td>10～20</td>
<td>1이하</td>
<td>90이상</td>
</tr>
</tbody>
</table>

그림 11. 용질차단법과 한의과학적 이용한 중수도 시스템.
여과망 분리 시스템을 설치하여 공정 개발연구를 추진하고 있다. 또한 국내 화성업체를 중심으로 분리막 제조 연구가 활발히 진행중이고, 엔지니어링업체에서도 설비와 운전기술 및 DATA 촉적에 노력을 기울이고 있으므로 국내에서도 빠른 시일내에 활성화되기 위해 예상된다.

참고 문헌

22. 일본 日立 플랜트 건설회사 자료.

사진 1. 코오롱 중앙연구소에서 개발한 중공사막 단면 사진.

완화여과막 및 역삼투막 모듈을 이용한 각종 폐수처리 시스템-
(주)코오롱 엔지니어링 설계 및 제작