생분해성 지방축 폴리에스테르

황기호·윤건상

1. 개 요

최근 폴라스틱의 처리에 대한 관심이 매우 높아지고 있다. 지금까지 대기 및 수질오염에 주로 옮겨진 관심이, 감감을 수 없이 늘어나는 각종 폐기물로 인한 토양오염분
아로 옮겨지고 있다. 각종 생활용품 및 산업용품 중, 폐기된
후 분해되지 않고 그대로 남아있는 폴라스틱라는 이들 폐
기물 중 가장 큰 문제거리로 등장하였다. "خلق 없는 거"는
폴라스틱의 장점은 더 이상 장점으로만 존재할 수 없는 상
황에 된 것이다. 이미 구미 각국에서는 이미 폴라스틱의
처리대책의 필요로 인해 각종 폐기물을 수용하는 폴라스틱에
대해 규제를 가하고 있으며, 조만간 국내에서도 이에 대한
규제가 시행될 것으로 전망된다. 이에 대한 해결방법의 하
나로 환경의 연구를 하고 있는 분야가 생분해성 고분자에 대한
연구이다. 일반적으로 폴라스틱의 폐기처리방법으로는 소
각, 매립, 재사용 등이 있는데, 소각시에는 산성가스 및 소
각가스의 발생, 매립시에는 토양의 불균형, 재사용시에는 수
질변경 및 수질오염 등의 문제가 있다. 자연상태에서 완전
히 분해가 일어나는 폴라스틱의 개발은 위해서 나선된 문
제점들에 대한 궁극적인 해결이 될 수 있을 것이다.

생분해성 폴라스틱은 그 분해 메커니즘에 의해 생분해성,
생분해성, 생분해성으로 나누어진다. 각각에 대한 생분해
성은 여러 물질로서 연구되고 있으며, 본고에서는
SKI에서 개발한 생분해성 지방축 폴리에스테르 수지에 대
해 주요적으로 소개하기로 한다.

2. 생분해성 지방축 폴리에스테르의 구조와 설계

생분해성 폴라스틱의 정리 및 폐기방법에 대해서는 아직
국제적으로 공인된 바가 없으나, 일본에서 조작된 생분해성
폴리에스테르 연구회에서는 "작아도 본질의 합성에서 생분의 대
사가 관여하여 지분사양 화합물로 변환하는 것을 대장으로
하는 고분자 학회"라는 정의를 내린 바 있다. 또한,
폐기방법에 대해서는 미국의 환경 분해성 폴라스틱 소관
회에서 검토중이며, 일본 통산성에서도 규격화를 진행하
고 있는 등 국가별 또는 국제기구별 폐기방법의 규격화가
전행되고 있어 본 국제공신의 폐기방법도 해법한 전망이다.

생분해성 폴라스틱은 미생물이 생성하는 미생물 생산형
PHB(Poly hydroxy butyrate), 자연계에 존재하는 천연
고분자를 이용한 천연동물 형성(Polylactic), 미생물에
대해 분해되기 쉬운 합성고분자형(Polycaprolactone,
Diol과 Diacid에 의한 Aliphatic Polyester) 등으로 분류되
며, SKI에서는 기존의 폴리에스테르 합성기술을 융합할 수
있는 합성고분자형에 개발 목표를 두었다.

| 흉기호 | 1966- | 한양대학교 화학공학과 졸업 |
| 1974 |
| 1979 |
| 1981- | MIT 연구(CAES) |
| 1982 |
| 1979- | 산경인디스트리 연구소 현장 책임연구원 |

신경언-소리 연구소(Gi Ho Hwang and Kun Sang Yoon, Sunkyong Industries R&D Center, 600 Jungia-Dong, Changan-Gu, Suwon, Kyungki-Do 440-745, Korea)
2.1 합성고분자형 지방족 폴리에스테르

Darby 등은 1968년 여러 가지 diisocyanate와 polyester 및 polyl의 조합으로 이루어진 polyurethane에 대한 개량된 성형 실험을 통하여 지방족 폴리에스테르를 soft segment와 하여 polyurethane에서 굴절 가정 하였다. 이 후 지방족 폴리에스테르의 생분해 성에 대한 연구가 활발하였으며, 생분해성 플라스틱의 설계 및 실험에 많은 진전을 가져오게 되었다. 지방족 폴리에스테르의 분해는 가수분해, 산소,

ripase에 의한 엔테르 분해의 가수분해 반응에 의해 일어난다.

토양과 해수층에 생겨오는 미생물에 의한 산소를 촉매로 하여 생성되는 플라스틱의 분해 기구는 산소의 특성인 기질특성에 의해 생성이 달라진다. 분해속도 역시 플라스틱의 구조 및 morphology뿐만 아니라 미생물의 생활정상, 산소의 환경에 따라 크게 좌우된다. 한편 지방족 폴리에스테르는 생분해성을 가지고 있으나, 지방족 폴리에스테르는 산소가 많고, 상

적적으로 분해가 빨리 용도가 크게 제한되어 왔으며, 이를 보완하기 위한 방법으로 polycaprolactone/polyamide 공합체와 polyethylene과의 blend 등이 시도되어 왔다. 그러나, 이런 blend에 의한 방법은 물질의 양상을 가져오나, 그 blend계가 완전한 생분해성을 갖는다고 보기는 어려운 측면이 있다. 또한 일부의 소화구가 개발한 고분자체, 고용량의 지방족 폴리에스테르 체조기계에 의한다 고분자체의 지방족 폴리에스테르를 연구 하여 diisocyanate를 사용하는. 이 역시 토양에서 분해된 후 진단한

isocyanate의 처리가 달라지는 것으로 생각된다. 이러한 점을 고려하여 SKI에서 개발한 지방족 폴리에스테르 SKYGEREN은 isocyanate가 포함되어 있지 않으며 Diol 및 Diacid화의 물리합에 의한 고분수 생분해성 지방족 폴리에스테르를 특징으로 한다.

2.2 생분해성 지방족 폴리에스테르중수지의 설계

생분해성 지방족 폴리에스테르중수지의 분자 설계 및 형성

에는 다음과 같은 사항이 고려되었다.

1) 토양, 난수 및 해수층에서 완전히 분해되어야 하며, 공기중에서 취급되는 분해에 의한 모성변화가 없어야 할 것.

2) 사용간 기간에서의 물성적 가능성을 및 사용후 토양중에서의 분해성에 대한 의문으로 생분해성 플라스틱은 대상에서 제외.

3) 폴리에틸렌과 비료물이 동결각은 동결장기로 제외.

4) Cellulose, starch 등의 천연고분자와 styrene, 염화 비판 등의 비료생산 플라스틱의 graft는 제외.

5) 녹여 녹은 후 하천의 분해성이 미비한 수용성 수지

제외(2차 환경오염의 가능성).

6) 미생물생산에 의한 폴리에스테르는 다식의 선형기생

이 있으므로 제외.

7) 생분해성, 안정성, 성형성, 물성의 향상 및 가격을

고려하여 실용화를 했다.

이외에 생분해성을 보유하기 위하여 표 1과 같은 분자의 구조, 성질과 생분해성의 관계가 고려되었다.

 이렇게 설계되고 합성된 지방족 폴리에스테르는 우수한

생분해성을 보이며, 일반적으로 용이한 낮고, 일반성형 및

저분자량 등으로 인해 실용화에 어려움이 있었다. 저분자

로 인한 생분해성 높이를 개선하여 기존 PE 정도의 용접을

가능하게 설계하기 위하여 여러 가지 glycol 및 diacid의 조합에

의한 용접의 변화를 관찰하였으며, 그 결과가 표 2에 나타

나 있다.

표 3에는 생분해성 지방족 폴리에스테르의 합성에 사용

되는 원료의 안전성에 대한 결과가 표시되어 있다. 표에

나타난 바와 같이, 지방족 폴리에스테르의 합성에 사용된 원

료는 니코틴, 카페인 및 식품에 비교하여 안전성이 멀어지

지 않으며, 대부분의 사용자는 acid성분은 식품첨가제로

사용되고 있어 그 안전성이 우수하다.

表 1. 분자구조, 성질 및 생분해성

<table>
<thead>
<tr>
<th>지방족형</th>
<th>방향층</th>
<th>Copolyester</th>
<th>Homopolyester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear chain</td>
<td>Branched chain, Cross linked chain</td>
<td>Saturated bond</td>
<td>Unsaturated bond</td>
</tr>
<tr>
<td>고분자량</td>
<td>고용량</td>
<td>Hydrophilic</td>
<td>Hydrophobic</td>
</tr>
<tr>
<td>저물질</td>
<td>고용률</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

표 2. 여러 가지 지방족 폴리에스테르의 용점

<table>
<thead>
<tr>
<th>용점</th>
<th>유점</th>
</tr>
</thead>
<tbody>
<tr>
<td>159℃</td>
<td>103℃</td>
</tr>
<tr>
<td>133℃</td>
<td>113℃</td>
</tr>
<tr>
<td>111℃</td>
<td>111℃</td>
</tr>
</tbody>
</table>

表 3. 생분해성 지방족 폴리에스테르 사용료 안전성

<table>
<thead>
<tr>
<th>사용료</th>
<th>금성독성 LD50(예측치)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocic acid</td>
<td>식품첨가물</td>
</tr>
<tr>
<td>Succinic acid</td>
<td>식품첨가물(미용, 식용료)</td>
</tr>
<tr>
<td>Adipic acid</td>
<td>JIS K 4172-72 식품첨가물 표지서</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>7,000~8,000 mg/Kg(예, 경구)</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>10,000 mg/Kg(예, 경구)</td>
</tr>
<tr>
<td>1,4-Butanediol</td>
<td>1,800~2,000 mg/Kg(예, 경구)</td>
</tr>
<tr>
<td>비료체</td>
<td></td>
</tr>
<tr>
<td>나코틴</td>
<td>24 mg/Kg(예, 경구)</td>
</tr>
<tr>
<td>카페인</td>
<td>192 mg/Kg(예, 경구)</td>
</tr>
<tr>
<td>석 을</td>
<td>3,000 mg/Kg(예, 경구)</td>
</tr>
</tbody>
</table>

LD50: 최대용량을 동물에 무방한 반복가사량의 용
3. 생성해성 지방족 폴리에스테르 SKYGREEN

3.1 제조공정
SKYGREEN은 그림 1에 나타난 것과 같이 Diol과 Dicarboxylic acid의 축융합반응을 통하여 얻어진다.
이때, 사용되는 축융의 종류 및 양은 폴리머의 분자량에 매우 큰 영향을 미치게 되며, 그림 2에 그 결과가 보여지고 있다. Ti계 축융은 초기반응성이 우수하나 시간이 갑수록 활성이 저하되며, Zn계, Ge계는 초기반응성이 좋지 않고, 활성이 오래 지속되며, 반응에 많은 시간이 소요되고 반죽할 만한 분자량상승을 얻기 어렵다.
SKYGREEN의 합성부터 완전분해에 이르는 환경요건은 그림 3과 같다.

3.2 타 생성해성 폴리에스테르 수지와의 비교
표 4에는 현재 상업화되어 있는 타의 생물해성 폴리에스테르 수지와의 분해성, 사용성, 물성 등의 비교가 되어 있다.

表 4. 타 생성해성 수지와 SKYGREEN의 비교

<table>
<thead>
<tr>
<th>수지</th>
<th>PHB</th>
<th>PCL</th>
<th>Bionol</th>
<th>SKYGREEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>분해방식</td>
<td>염분해</td>
<td>염분해</td>
<td>염분해</td>
<td>염분해</td>
</tr>
<tr>
<td>생물학적</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>염분해도 (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>생물학적</td>
<td>염분해</td>
<td>염분해</td>
<td>염분해</td>
<td>염분해</td>
</tr>
<tr>
<td>반응온도 (°C)</td>
<td>130 ~ 180</td>
<td>60</td>
<td>90 ~ 120</td>
<td>90 ~ 120</td>
</tr>
<tr>
<td>제품제조사</td>
<td>ICI</td>
<td>UCC</td>
<td>소화과학</td>
<td>진명산업</td>
</tr>
</tbody>
</table>

그림 1. SKYGREEN의 세포 구성.

그림 2. 덩어리를 반응기에의 축융반응에 따른 수평과 분자량 변화도.

그림 3. SKYGREEN의 환경 특성.

고분자과학과 기술 제 5 권 1 호 1994년 2월 15일
표 5. SKYGREEN의 물성

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test method</th>
<th>Unit</th>
<th>Test value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific gravity</td>
<td>ASTM D792</td>
<td>g/ml</td>
<td>1.2~1.4</td>
</tr>
<tr>
<td>Hardness (R-Scale)</td>
<td>D785</td>
<td>%</td>
<td>105</td>
</tr>
<tr>
<td>Mold shrinkage</td>
<td>D955</td>
<td>%</td>
<td>1.3~2.1</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile strength</td>
<td>D638</td>
<td>Kg/cm²</td>
<td>300~690</td>
</tr>
<tr>
<td>Tensile elongation</td>
<td>D638</td>
<td>%</td>
<td>3~450</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>D790</td>
<td>Kg/cm³</td>
<td>400~950</td>
</tr>
<tr>
<td>Flexural modulus</td>
<td>D790</td>
<td>Kg/cm²</td>
<td>10000~50000</td>
</tr>
<tr>
<td>Impact strength</td>
<td>D256</td>
<td>Kg cm/cm (Notched)</td>
<td>3~11.9</td>
</tr>
<tr>
<td>Melt index</td>
<td>D1238</td>
<td>g/10 min (at 190°C, 216 g)</td>
<td>0.5~20</td>
</tr>
<tr>
<td>Melting point</td>
<td>Perkin Elmer (DSC-7)</td>
<td>°C</td>
<td>90~120</td>
</tr>
<tr>
<td>Glass transition temperature</td>
<td>Perkin Elmer (DSC-7)</td>
<td>°C</td>
<td>35~48</td>
</tr>
</tbody>
</table>

표 6. SKYGREEN의 종류 및 용도

<table>
<thead>
<tr>
<th>구분</th>
<th>Grade</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>Film</td>
<td>SKYGREEN FG-100</td>
<td>소량, 밴드, 튜브, 위생용, 실험용, 임시용 감자, 일반용 임시감자, 일반용</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN FG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN FG-300</td>
<td></td>
</tr>
<tr>
<td>사출성형</td>
<td>SKYGREEN IG-100</td>
<td>용기류, 관촉물, 위생용품, 화장품용기, 위생용품, 사무용품</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN IG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN IG-300</td>
<td></td>
</tr>
<tr>
<td>중공성형</td>
<td>SKYGREEN BG-100</td>
<td>산술용, 산재용 등</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN BG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN BG-300</td>
<td></td>
</tr>
<tr>
<td>Sheet 및 전공형</td>
<td>SKYGREEN SG-100</td>
<td>상품 내외부 포장, 인쇄용품</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN SG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN SG-300</td>
<td></td>
</tr>
<tr>
<td>Coating & laminating</td>
<td>SKYGREEN CG-100</td>
<td>Gysp, Prepaid card</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN CG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN CG-300</td>
<td></td>
</tr>
<tr>
<td>박포</td>
<td>SKYGREEN EG-100</td>
<td>보장제료, 식료품 Tray</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN EG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN EG-300</td>
<td></td>
</tr>
<tr>
<td>섬유</td>
<td>SKYGREEN MG-100</td>
<td>부직포, 어달 납시줄 등</td>
</tr>
<tr>
<td></td>
<td>SKYGREEN MG-200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SKYGREEN MG-300</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Modified Strum Test

시료를 Oven Aging Technique에 의해 Thermal Oxidation 시켜 분자량을 측정 수준을 하여 적합시키다.

단점: 정확하지 않음
장점: 분해 속도가 빠름

4.3 가상 매립 환경 Test

![Test Setup Diagram]

4. 분해성 평가방법의 개요 및 SKYGREEN 평가 결과

4.1 평가방법의 개요

4.1.1 ASTM D4300

Aspergillus Niger Fungi를 배양하여 혼합 균포자의 응력을 만들고 이를 펄프에 접촉하여 펄퍼에서의 Fungi 성장 속도를 측정한다.

단점: 온도 분해되지 않음
장점: 분해 속도가 빠름

4.1.2 Modified Strum Test

시료를 Oven Aging Technique에 의해 Thermal Oxidation 시켜 분자량을 측정 수준을 하여 적합시키다.

단점: 정확하지 않음
장점: 분해 속도가 빠름

4.1.3 가상 매립 환경 Test

![Test Setup Diagram]

단점: 온도와 습도 유지 곤란
장점: 온도와 분해과정 측정

이 세가지 방법중에서 SKI는 ASTM(D4300)을 이용하여 분해성 평가를 실시하였으며, 실제 매립 test를 통한 분해성 평가를 하였다.
4.2 Lab Test 결과
Lab Test 결과 급격한 분자량 감소를 일 수 있으며, 45일 경과 후 검액 및 상태로 남아 있어 분자량 측정이 불가능하며 일반적으로 모든 고분자가 분자량이 1,000미만으로 되어 있을 때 환전분해가 된다고 생각되며, 이러한 검액 및 상태에서는 1,000미만의 분자량으로 추정된다.

4.2.1 SKYGREEN-100

4.2.2 Field Test 결과
4.2.2.1 토종(경기도 수원)

4.2.2.2 해증(부산 일광)
Field Test 결과 토종, 텃수, 해증에서 모두 분해가 일어날 수가 있고, 특히 토종, 백두봉과 해증에서 배터 분해속도가 일어날 수 있으며, 토종 Test 결과 토양의 속류에 따라 분해속도의 차이가 있고, 텃수의 경우 해중을 받은 텃수 행렬을 일반적인 텃수에 따라 분해속도의 차이가 있음을 확인하였으며, 해충의 경우를 통해 사해, 해충에 서 거의 비슷하게 분해된 것을 알 수 있었다.
4.2.2.3 담수(충남 공주)

4.2.3 토종, 해중, 담수에 매립 후 물성 측정(3개월)

<table>
<thead>
<tr>
<th>SKYGREEN 100</th>
<th>SKYGREEN 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>최초의 파탄강도</td>
<td>367 Kg/cm²</td>
</tr>
<tr>
<td>3개월후 파탄강도</td>
<td>80 Kg/cm²</td>
</tr>
<tr>
<td>최초의 신도</td>
<td>365%</td>
</tr>
<tr>
<td>3개월후 신도</td>
<td>7%</td>
</tr>
</tbody>
</table>

현지한 Weight loss 표면 강도 저하 현지한 강도 감소

신경인더스트리에서는 미생물에 의해 완전히 분해되는 지방족 폴리에스테르수지로 생분해성 수지를 개발하였다. 신경인더스트리에서 지방족 폴리에스테르를 목표로 한 것은 지금까지 알려진 몇 가지 플라스틱의 분해 mechanism 중 가장 지방족 폴리에스테르만이 100% 완전분해가 가능한 것으로 알려져 있기 때문이다. 일반적으로 지방족 폴리에스테르는 고분자량의 수지합성이 어려울 것으로 알려져 있으나, 이마 축적되어 있는 족중합기술과 여러가지 평가 및 인가의 조합에 의해, 성형성과 물성이 우수한 생분해성 플라스틱을 얻는데 성공하였다.

분해성수지라는 것이 처음 일반에게 소개되었을 때, 환경보전이라는 측면에서 매우 큰 호응을 얻었으나, 실제로는 Maker들의 주관과 달리 분해도가 미흡하다는 소통들로 유동되어, 점차 많은 소비자, 환경보호주의자들에게 실망과 혼란을 주게 되었다. 더욱이, 국내외적으로 생분해성 플라스틱에 대한 정의가 공인된 평가방법이 존재하지 않는 이 상황에서는 소비자의 판단이 더욱 어려울 수밖에 없는 실정이다. 따라서 분해성 플라스틱이 환경보전을 위한 치매플라스틱 처리방법에 한 분야로 정립되기 위해서는 조속히 옥의 정의, 평가방법의 확립과, 분해성플라스틱의 분해 mechanism 또한 확실히 규명되어야 할 것이며, 앞으로 얻은 ISO의 규격제정 및 이를 바탕으로 각국의 규제에 신속히 대응하여 환경보전의 국제적 조류에 뒤지지 않도록 국내 각업체의 노력을 필요한 시점이라 하겠다.

참고 문헌