Properties of Polyglutamic Acid Produced by Bacillus subtilis ATCC 6633 in Rehydrated Whey Powder Supplemented with Different Carbon Sources

Arzu Cagri-Mehmetoglu† and Maryna van de Venter*

Dept. of Food Engineering, Sakarya University
*Dept. of Biochemistry and Microbiology, Nelson Mandela Metropolitan University

(Received March 11, 2015; Revised April 13, 2015; Accepted April 18, 2015)

Abstract: In this study, the use of rehydrated whey powder (RWP) solutions containing different carbon sources (citric acid, ammonium sulfate, or glutamic acid) for γ-poly(glutamic acid) (γ-PGA) by Bacillus subtilis ATCC 6633 was explored. After 72 h of fermentation at 30 °C, cell growth, γ-PGA production, molecular weight by SDS-PAGE, rheological properties and NMR analysis of γ-PGA were determined. The growth of B. subtilis was significantly different during 72 h of fermentation in RWP, medium E, and RWP containing citric acid or glutamic acid. These results showed the dynamic viscosity of the 1% polymer solution was 2.5 Pa·s at 10 1/sec shear rate. The maximum γ-PGA concentration was 1.57 g/100 mL in RWP containing glutamic acid, citric acid and ammonium sulfate. Therefore, RWP as a waste product with being efficient and more economic fermentation medium to produce γ-PGA can be ideal for the industrial production.

Keywords: polyglutamic acid, Bacillus subtilis, whey powder, carbon sources, NMR.

Introduction

Extracellular polymers produced by microorganisms are usually beneficial and more profitable for industry practice. For example, microbial polysaccharides such as xanthan gum (Xanthomonas campestris), dextran (Leuconostoc mesenteroides), curdlan (Agrobacterium tumefaciens and Alcaligenes faecalis), pullulan (Aureobasidium pullulans), gellan (Pseudomonas elodea), and alginate (Azotobacter vinelandii) are common food industry ingredients. Bacillus subtilis is also known to produce extracellular polymers including mostly γ-poly(glutamic acid) (γ-PGA).3-4 This edible polymer has received considerable attention due its water solubility. Its structure is unusual because it is a homopolymer of glutamic acid that has amide linkages between glutamate γ-carboxyl and α-amino groups.5 These and other features make it of interest for applications in medicine, foods, plastics, and oil recovery.

Production of γ-PGA by Bacillus species has been extensively studied under different conditions.2-5,10-12 Medium E, consisting of L-glutamic acid, citric acid, glycerol, NH4Cl, K2HPO4, MgSO4·7H2O, FeCl3·6H2O, CaCl2·2H2O, MnSO4·H2O was formulated for PGA production by Leonard et al.7 In general, the concentration of L-glutamic acid, citric acid and ammonium sulfate strongly affects the amount of γ-PGA concentration in the final medium.10-12 However, the addition of glucose as a carbon source decreases γ-PGA production and increases by-product polysaccharide by B. subtilis.10,12

Whey, a by-product of cheese processing in the dairy industry, also has attracted considerable attention due to its high nutritional content and functional properties.13 Whey powder contains lactose (78%, w/v), protein (5.5-5.6%, w/v), lipid (0.6%), trace amounts of vitamins (A, B1, B2, B6, B12, vita-
in 3% acetic acid and destained in water. The polymers obtained from the supernatant by adding acetone at a volumetric ratio of 3:1 and stored at 4 °C for 24 h. The supernatant was concentrated by ultrafiltration using a 30000 molecular weight cut off membrane (Model 8010, Millipore Corp., Bedford, MA, U.S.A.). The retentate was washed twice with deionized water, and freeze-dried. The PGA concentration was determined by gel permeation chromatography (GPC) (TSK gel GMPWXL and GMPW column, Tosoh, Tokyo, Japan; Asahipak GS-620HQ, Showa Denko, Tokyo, Japan). Pullulan (Sigma-Aldrich, U.S.A.) was used as a standard. Twenty µg of a polymer sample in 20 µL of developing buffer was injected into the GPC and developed with 50 mM phosphate buffer (pH 7.0) at a flow rate of 0.8 mL/min. Total carbohydrate levels were estimated using the phenol sulfuric method. A purified form of Gellan® CM (Sigma-Aldrich, U.S.A.) was used as the standard.

NMR Analysis. Polymer composition was confirmed using nuclear magnetic resonance (NMR). Analysis of 1H and 13C NMR was conducted with a NMR spectrometer (Varian Unityvna 500 NMR Spectrometer, MO) using DMSO-d6 as an internal reference.

Viscosity and Shear Testing. Viscosity and shear rate of the 1% PGA solution was measured at 21, 30, 35, 40, 50 and 60 °C at pH 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 using a viscometer (Rheolab QC, Anton Paar, Ahland, VA, U.S.A.).

Molecular Weight of γ-PGA by SDS-PAGE. The degree of PGA polymerization was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in a 10% gel. The protein standards (ovalbumin, 45 kDa; serum albumin, 66.2 kDa; phosphorylase b, 97 kDa; β-galactosidase, 116 kDa; acid phosphatase, 130 kDa) were stained with Coomassie brilliant blue and, after destaining in 7% acetic acid-10% methanol, the gel was stained for PGA with 0.5% methylene blue in 3% acetic acid and destained in water.
Results and Discussion

Bacterial Growth. Growth and polyglutamic acid production ability of *B. subtilis* was determined by using RWP as a medium with supplementation of different carbon and nitrogen contents such as ammonium sulfate, glutamic acid, citric acid. The results showed that *B. subtilis* ATCC 6633 grew in both RWP and RWP media containing L-glutamic acid, citric acid, and/or ammonium sulfate (Table 1). Numbers of *B. subtilis* significantly increased in RWP medium from 4.3 to 10.92 log$_{10}$ CFU/ml after 72 h at 30 °C (p<0.05). *B. subtilis* reached populations of 11.09, 10.94 or 10.84 log$_{10}$ CFU/mL in RWP media containing either citric acid or L-glutamic acid alone or citric acid and L-glutamic acid (2:2) together after 72 h of fermentation, respectively. Addition of L-glutamic acid did not significantly decrease cell growth (p>0.05). In the present study, cell growth was similar for each media used except that containing ammonium sulfate (p<0.05). In fact, the addition of ammonium sulfate to RWP solution significantly decreased the growth (p<0.05).

In our previous study, RWP was shown as an ideal media for...
the growth of *B. subtilis* ATCC 6633.\(^{22}\) Generally, in the present study, supplementation of RWP with glutamic acid and/or citric acid significantly made a difference in the growth of *B. subtilis* compared to the control (RWP) \((p<0.05)\). In agreement with our findings, Kunioko and Gotto\(^{26}\) and Gotto and Kunioko\(^{11}\) also reported that the addition of glutamic acid or high levels of ammonium sulfate depressed the growth of *B. subtilis* in media containing citric acid.

Production of γ-Polyglutamic Acid. Table 2 shows the amount of γ-PGA produced by *B. subtilis* in the media tested during 72 h of fermentation. Only 0.23 and 0.57 g/100 mL of γ-PGA were produced in RWP media and Medium E, respectively. The addition of 2 or 3% of citric acid or glutamic acid alone in RWP did not significantly change γ-PGA production; however, production of γ-PGA increased 4-5 times using citric acid and glutamic acid together in RWP media \((P<0.05)\). Moreover, the addition of 0.5% ammonium sulfate with 2 or 3% citric acid also significantly increased the production of γ-PGA from 0.23 to 0.49 or 0.5 g/100 mL, respectively \((P<0.05)\). However, the presence of 0.5 or 0.75% ammonium sulfate alone or with glutamic acid in RWP medium slightly decreased the yield of γ-PGA. According to the results, the maximum amount of γ-PGA (1.57 g/100 mL) was synthesized by *B. subtilis* in RWP media when ammonium sulfate was used with both glutamic acid and citric acid.

PGA-producing bacteria were divided into two groups: glutamate-dependent and glutamate-independent producers.\(^{26,27}\) In the former, PGA yield increased upon addition of glutamate to the medium, however considerable γ-PGA can be produced even in the absence of glutamate using the de novo pathway for L-glutamate synthesis.\(^{26}\) As shown in Table 2, γ-PGA production was low when glutamic acid was not used as a nitrogen source; thus *B. subtilis* ATCC 6633 could be subsequently classified as a glutamate-dependent PGA producer. Most literature reports suggest using 2-3% of L-glutamic acid for the production of γ-PGA.\(^{4,28}\) γ-PGA is an extracellular polymer produced from the intracellular glutamic acid via a membranous synthesis mechanism. Therefore, the amount of intracellular glutamic acid is important for the biosynthesis of PGA, and an increase in its level would result in more effective production of the polymer.\(^{29}\) Similarly, Zhang et al.\(^{30}\) demonstrated that addition of 2 g/L ammonium sulfate and 20 g/L glutamic acid into monosodium glutamate waste liquid used as a fermentation medium could provide economical production of γ-PGA by *B. subtilis* NX-2 in this study. Citric acid is also one of the main components for γ-PGA production. Kunioka and Goto\(^{26}\) and Cronwick and Gross\(^{3}\) proved that citrate was indeed a precursor substrate for polymer production, presumably via the tricarboxylic (TCA) cycle. Supplemented citric acid could be shifted to α-ketoglutaric by the TCA cycle and the α-ketoglutaric was then changed to glutamate through the glutamate synthetic pathway. According to the studies, the glutamate units of PGA come from both additional glutamate and the glutamate synthesized by glutamate synthetic pathway in this strain.\(^{12,21}\)

Besides carbon sources, nitrogen sources such as ammonium sulfate or ammonium chloride are known to support production of PGA.\(^{32,33}\) A free amino group necessary for bio-

Table 2. Levels of γ-Polyglutamic Acid and Polysaccharides Produced by *B. subtilis* in RWP Media with Different Carbon Sources during 72 h of Fermentation

<table>
<thead>
<tr>
<th>Media</th>
<th>γ-PGA (g/100 mL)</th>
<th>Polysaccharides (g/100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium E</td>
<td>0.54±0.02**</td>
<td>0.03±0.01*</td>
</tr>
<tr>
<td>20: 0:0:0*</td>
<td>0.23±0.08</td>
<td>0.54±0.06</td>
</tr>
<tr>
<td>20: 2:0:0</td>
<td>0.24±0.05</td>
<td>0.22±0.01</td>
</tr>
<tr>
<td>20: 3:0:0</td>
<td>0.28±0.06</td>
<td>0.20±0.01</td>
</tr>
<tr>
<td>20: 0:2:0</td>
<td>0.45±0.07</td>
<td>0.12±0.02</td>
</tr>
<tr>
<td>20: 0:3:0</td>
<td>0.34±0.03</td>
<td>0.11±0.02</td>
</tr>
<tr>
<td>20: 0:0:0.5</td>
<td>0.14±0.08</td>
<td>0.05±0.01</td>
</tr>
<tr>
<td>20: 0:0:0.75</td>
<td>0.12±0.06</td>
<td>0.04±0.01</td>
</tr>
<tr>
<td>20: 2:2:0</td>
<td>0.99±0.07</td>
<td>0.15±0.02</td>
</tr>
<tr>
<td>20: 2:3:0</td>
<td>1.13±0.04</td>
<td>0.16±0.03</td>
</tr>
<tr>
<td>20: 3:2:0</td>
<td>0.87±0.01</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>20: 3:3:0</td>
<td>1.23±0.03</td>
<td>0.13±0.02</td>
</tr>
<tr>
<td>20: 2:0:0.5</td>
<td>0.49±0.03</td>
<td>0.12±0.05</td>
</tr>
<tr>
<td>20: 2:0:0.75</td>
<td>0.32±0.02</td>
<td>0.10±0.01</td>
</tr>
<tr>
<td>20: 3:0:0.5</td>
<td>0.50±0.02</td>
<td>0.13±0.02</td>
</tr>
<tr>
<td>20: 3:0:0.75</td>
<td>0.34±0.03</td>
<td>0.17±0.04</td>
</tr>
<tr>
<td>20: 0:2:0.5</td>
<td>0.21±0.02</td>
<td>0.12±0.03</td>
</tr>
<tr>
<td>20: 0:2:0.75</td>
<td>0.19±0.05</td>
<td>0.11±0.01</td>
</tr>
<tr>
<td>20: 0:3:0.5</td>
<td>0.25±0.03</td>
<td>0.09±0.02</td>
</tr>
<tr>
<td>20: 0:3:0.75</td>
<td>0.24±0.04</td>
<td>0.14±0.05</td>
</tr>
<tr>
<td>20: 2:2:0.5</td>
<td>1.34±0.06</td>
<td>0.09±0.07</td>
</tr>
<tr>
<td>20: 2:3:0.5</td>
<td>1.45±0.04</td>
<td>0.05±0.01</td>
</tr>
<tr>
<td>20: 3:2:0.5</td>
<td>1.54±0.07</td>
<td>0.08±0.03</td>
</tr>
<tr>
<td>20: 3:3:0.5</td>
<td>1.57±0.06</td>
<td>0.07±0.02</td>
</tr>
</tbody>
</table>

*Whey powder: citric acid: glutamic acid: ammonium sulfate (% wt/v).** Mean±standard deviation (n=3). Means in same column with different alphabets are significantly different \((p<0.05)\).
synthetic pathway of PGA production can be readily derived from ammonium sulfate or ammonium chloride. Supportively, in the present study, ammonium sulfate addition with citric acid and glutamic acid made a significant difference in the amount of PGA in the medium. Moreover, the effects of ammonium sulfate on γ-PGA synthesis by B. subtilis were also examined by Gotto and Kunioka. When no ammonium sulfate was added to the L-glutamic/citric acid medium, they reported that a small amount of γ-PGA was produced. However, when 2.5 g/L ammonium sulfate was added, PGA yield greatly increased. Similar to the present study, Kuniko and Gotto reported that 0.96 g/100 mL γ-PGA was produced by B. subtilis IFO 3335 in a medium containing 3% L-glutamic acid, 2% citric acid and 0.5% ammonium sulfate.

Inorganic salts like CaCl₂ and MnSO₄ also have a significant effect on yield as well as stereochemical composition of γ-PGA. Huang et al. observed that the addition of CaCl₂ effectively reduced viscosity of culture broth and increased consumption of extracellular glutamic acid by 11.4%, leading to a higher γ-PGA yield compared to the control. In the current study, no minerals were added since RWP medium had a very rich mineral content (calcium (0.9-1.0%), magnesium (0.1-0.2%), sodium (0.8-0.9%), potassium (2.2-2.4%), phosphorous (0.8-1.0%), iron (10-12 ppm), copper (4-6 ppm), zinc (48-52 ppm), and manganese (24-26 ppm)).

Polysaccharide Production. Some polysaccharide byproduct formation (0.54 g/100 mL) was also observed during B. subtilis fermentation in this study in RWP (Table 2). In the current study, the presence of glutamic acid or ammonium sulfate in the media significantly reduced polysaccharide production (p<0.05). However, the amount of polysaccharide in the medium was comparably higher in the presence of citric acid. Minimum polysaccharide production (0.03 g/100 mL) occurred when glutamic acid, citric acid and ammonium sulfate were added into RWP media.

Similar to our previous study in which 51 to 76 g/100 mL polysaccharide was produced by B. subtilis in RWP during 72 h of fermentation, RWP did not have any glucose but the lactose content was high. B. subtilis, which possesses β-galactosidase (lactose-hydrolyzing enzyme), can use lactose as a carbon source by hydrolyzing it to glucose and galactose to produce PGA and polysaccharides. Nevertheless, Xu et al. reported that B. subtilis NX-2 could not produce any γ-PGA or polysaccharide when lactose was used as a carbon source. According to these studies, glucose and excess citric acid in the media lead to polysaccharide production through TCA cycle and glycogenesis.

NMR. 13C NMR analysis of γ-polyglutamate showed the following chemical shifts: 56.43 ppm for β-CH₂ group, 31.61-34.01 ppm for γ-CH₂ group, 182.21 ppm for CO group, and 182.69 ppm for COO- group (Figure 1). 1H NMR for γ-polyglutamate in D₂O produced the following chemical shifts: 3.98 ppm for -CH proton; 1.98 and 1.80 ppm for β-CH₂ proton; and 2.19 ppm for γ-CH₂ proton (Figure 2). This NMR spectrum is quite similar to that of γ-PGA reported by Wu and Ye and Perez-Camero et al.. Hence, there is a good possibility that the polymer produced by B. subtilis contained the structure of PGA. There are also -CH₂O, -CH₂OH, -CH-OH groups observed in the 1H NMR spectrum and CHOH-CHOH bonds in the 13C NMR spectrum (Figures 1, 2). These chemical shifts indicate that the polymer might contain several polysaccharides as well as γ-PGA.

Figure 1. 13C NMR spectrum of polymer produced by B. subtilis in RWP media with different carbon sources.

Figure 2. 1H NMR spectrum of polymer produced by B. subtilis in RWP media with different carbon sources.
H and 13C NMR techniques have been widely used to estimate the structural parameters of polymers. However, these two methods have limitations in resolving the resonance of tertiary and quaternary carbons of -CH, -CH$_2$ and -CH$_3$ in the aliphatic region. With the emergence of various multi-pulse one- and two-dimensional NMR techniques, interpretation of the 13C NMR spectra has been greatly facilitated. Recently, distortion less enhancement by polarization transfer (DEPT) has been developed to simplify and assign the resonances in the overlap regions of p3 C NMR spectra. In this study, the DEPT 135 technique was used to confirm C atoms in our structure. The DEPT 135 spectrum does not show carbon atoms without any proton bonds (Figure 3) which is why the chemical shift at 182.21 for CO group and 182.69 for COO- group did not appear. Moreover, in this kind of spectrum, the peaks on the positive side of the graph represent -CH or -CH$_3$ and the peaks on the lower side represent -CH$_2$. Thus, the DEPT 135 spectrum confirmed that the chemical shifts were 56.43 ppm for -CH$_2$ group, 31.61 ppm for -CH$_3$ group, 34.01 ppm for -CH$_2$ group, 34.2-45.9 ppm for -CH group, 61.2 ppm for CH-OH group, 182.21 ppm for -CO group, and 182.69 ppm for COO- group.

Viscosity and Shear Rate. The temperature and pH dependent viscosity of a 1% γ-PGA solution were measured at a constant shear rate (10.21/s) (Figure 4). Viscosity of the γ-PGA solution generally decreased with increasing temperature and decreasing pH. Maximum dynamic viscosity of the 1% γ-PGA solution was observed at 30 °C, pH 6 as 3.13 Pa.s a the minimum viscosity of 0.28 Pa.s seen at 60 °C, pH 2. Increased viscosity at higher pH values may be attributed to the dissociation of carboxyl groups and to the conformational change of PGA from the helical to the randomly coiled form.

The change of dissociation of the ionizable groups caused by the temperature shift has a major impact on dynamic rigidity although the temperature dependency of this dissociation is usually small. Similarly, Ho et al. found that increasing the pH and decreasing the temperature promoted viscosity of a γ-PGA solution measured as 100-400 cps. These results also indicate that the polymer solution was non-Newtonian and pseudoplastic. Increasing the speed rate decreased polymer shear stress (data not shown). Non-Newtonian flow behavior is often observed for microbial biopolymers.

Molecular Weight of γ-PGA. The molecular weight of the precipitated peptide was about 1.3×105 Da for each media used in this study by SDS-PAGE and GPC (Figure 5). According to these results, using different media did not change the molecular weight of γ-PGA produced by B. subtilis. Moreover, PGA hydrolysis was minimal in the some of the media including RWP with glutamic acid, citric acid, RWP with glutamic acid and RWP with citric acid after fermentation as reported by others. The γ-PGA produced by Bacillus sp. generally has a high molecular weight in the range of 105-106 Da. Some studies suggested that final molecular weight can decrease as fermentation time increases, owing to an enzyme that catalyzes the hydrolytic breakdown of γ-PGA. However, in the current study, hydrolysis was not observed RWP or RWP containing ammonium sulfate. Similarly, these studies showed that the addition of ammonium sulfate to the medium for γ-PGA production depressed cell growth and lead to the production of γ-PGA with a high molecular weight by reducing the hydrolysis. Kunioko and Gotto also showed that addition of
higher than 0.25% of ammonium sulfate reduced the hydrolysis of γ-PGA during stationary phase.

Conclusions

As a conclusion, the results showed that RWP medium can be used as a fermentation substrate to produce γ-PGA by using *B. subtilis* ATCC 6633 and also indicated that the presence of glutamic acid, citric acid and ammonium sulfate in RWP medium improved production of γ-PGA. For a broader application, the cost of bioproducts is one of the main economic determinants of the process. Reducing the cost of biopolymer production by optimizing the fermentation medium is a prerequisite for industrial application. Using RWP as a low-cost and high nutrient content fermentation medium for production of γ-PGA will meet this industry objective.

Acknowledgment. We would like to thank Prof. Dr. Cedric McCleland for his help on using NMR device and interpretation of graphs obtained from NMR analysis. This work was supported by Sakarya University Scientific Research Projects Fund (BAP-2010-01-16-006).

References

