ABS수지 성능 최적화 방안
문윤국, 김대수
충북대학교 공과대학 화학공학과
(2006년 8월 4일 접수, 2006년 12월 1일 재배)

The Optimum Solution for the Best Performance of ABS
Hong Guk Mun and Dae Su Kim
Department of Chemical Engineering, Chungbuk National University,
12 Kaesin-dong, Cheongiu, Chungbuk 361-763, Korea
(Received August 4, 2006; accepted December 1, 2006)

초록 : ABS(acrylonitrile butadiene styrene)수지의 성능특성에 미치는 영향을 알아보기 위해 ABS, 도장, 도료, 사출 등 전 부분에 대한 영향도를 파악함으로써 ABS수지의 성능특성을 최적화하기 위한 체계적 방안을 수립하였다. ABS수지의 성능특성에 영향을 미치는 인자를 실험실 규모에서 검토한 결과 변형에 의한 기계적 요인보다는 사용된 화학적적 화학적, 물리적 특성에 의한 요인이 극복적인 것으로 나타났다. ABS수지를 이용한 제조 현장에서 여러 인수(ABS수지, 사출, 화학적, 도장 등)에 대해 검토한 결과 ABS수지 표면에 직접적으로 접촉하는 화학적적 특성(사파)에 의한 영향도가 가장 큰 것으로 확인할 수 있었다. 이와 같은 결과를 통해 수지의 성능특성에 미치는 각 인수별 영향도 수준 평가가 가능하게 되었으며, 이를 통해 양산시 나타나는 도장불량 등의 문제해결을 위한 관리 과정의 체계화 및 품질 향등요인의 제거 방안을 구체화할 수 있었다.

Abstract : We investigated resin, thinner, painting, and injection for analyzing the chemical effect of polymer, and made the optimum solution with the best performance of ABS(acrylonitrile butadiene styrene) resin. The effect depended on chemical material especially its chemical and physical properties instead of mechanical transformation. When we looked over ABS resin, injection, chemical material and painting, we found out thinner was the main factor for painting problem. Throughout this test, we could solve the problem, secure the system for control process and drop many factors for changing quality.

Keywords : resin, painting, coating, thinner, chemical and physical properties.
사출성형, 도장공정 전 공정을 검토 대상으로 포함하여, 관련부문간 협력을 통해 연구를 하였으며, 연구방향은 도장공정에서 사용되고 있는 원료인 ABS수지와 화학물질간의 영향인자를 연구하고, 실험을 통해 성장지하 원인을 규명하였다.12-14 이를 토대로 양산현장에서 원료, 사출, 도료, 도장 등 각 공정에 있어 최적의 조건을 확보하여 비정형이고 반복적인 도장으로 인한 성장지하를 제거하였다.15-17

설 험

시료 및 재료: ABS수지 및 chemical 측면에서 영향인자 도출을 위하여 ABS수지 3종, 도장현장에서 사용중인 동절기, 하절기 혼합용액(시나) 2종과 페인트 업체에서 추천된 혼합용액(시나) 2종을 선정하였으며, 혼합용액(시나) 차량에 대표적으로 적용중인 용제 19종을 chemical group(hydrocarbon, alcohol, ester, ketone, polyalcohol)별로 Table 1과 같이 선정하였다.

도장성능저하 인자: 도장시험에 관련 인자(ABS수지, 사출, 시나, 도장)에 대한 영향도 파악 및 공정별 최적화 작업을 검토하였다. 도장시험은 종합적 원인으로 발생하는 것으로 계열변경 시점부터 동일 유형의 성장지하의 반복에 따른 종합적 개선방안을 찾고자 ABC, 사출공정, 도장공정의 도료 및 시나에 사용되고 있는 chemical 간 영향도 및 기종의 개선 인자를 검토하였다.

원료(ABS): 원료조립에서 표준 그레이드를 기준으로 하여 최적의 원료 물성 및 도출을 위하여 ABS 유동성 변화 30%, 내화 학성 영향인자 AN 함량이 2% 증량된 원료를 선정하였다. 고유동 특성은 가공성이 잘 되어 개량, 제품의 응력을 최소화하여 도장품질에 영향을 주며, AN 특성 또한 도장 품질에 영향을 줄 수 있는 인자로 삼함을 통해 확인하였다.

사출공정: 사출공정에서 제품 품질에 영향을 주는 인자인 금형온도 15℃ 상승, 사출기 환경(450, 650℃), 케이드 사출시간(바로 5분 후, 미리날)별로 구분하여 사출공정 측면에서 최적의 조건을 찾는 실험을 하였다. 최적의 시나 및 유효조건은 제품의 응력을 줄여 주여 정책의 도장 불량 발생을 최소화하는 것이다.

도료 및 시나: 생산 현장에서 양산 불량률을 감소 및 향상시키기 위해 시나 변경에 따른 불량률 추적을 4개월 동안 관찰하였다. 현장 양산 조건에서 최적 A-B-S수지, 도료 및 시나를 적용하여 개선 정도 및 불량률을 평가하였다.

도장: 실제 사출품에 대한 도장시험 재현 실험을 위하여 시나 종류, 시나 사용량 5~150℃, 도막 두께 13~34 μm 도장 후 표면 관찰을 통하여 최적의 도장조건을 찾고자 하였다. 도장공정 조건은 용제 공급압력 2±0.5 kg/cm²로 공급되는 메탈 chemical (도료+시나+경화제)의 분산압력, chamber 온도 20±5℃ 및 습도 60±10%RH, 이송속도 rpm(이송 설비에 loading되는 전압 및 전류방향으로 속도 조절임) 조건에서 실시하였다.

ABS수지의 시나 및 용제 상관관계 분석: ABS의 도장에 의한 성장지하 인자별 검토 실험을 위하여, 현장에서 사용되는 시나 분석을 하였고, ABS와 시나 및 용제의 상관관계 분석을 위한 용제 및 시나의 용해도 및 농도비 비교분석, 용제 종류별 내화학성 양상 실험, Table 1. Solvent Substances Used for Experiment

<table>
<thead>
<tr>
<th>System</th>
<th>Solvent</th>
<th>Chemical name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbon</td>
<td>Toluene</td>
<td>Methyl alcohol</td>
<td>108-88-3</td>
</tr>
<tr>
<td></td>
<td>Xylene</td>
<td></td>
<td>1330-20-7</td>
</tr>
<tr>
<td>Alcohol</td>
<td>MA(MeOH)</td>
<td>Methyl isopropyl alcohol</td>
<td>67-56-1</td>
</tr>
<tr>
<td></td>
<td>IPA</td>
<td>iso-Propanol alcohol</td>
<td>67-63-0</td>
</tr>
<tr>
<td></td>
<td>Iso-ButOH</td>
<td>iso-Butyl alcohol</td>
<td>78-83-1</td>
</tr>
<tr>
<td></td>
<td>DAA</td>
<td>Diacetone alcohol</td>
<td>123-42-2</td>
</tr>
<tr>
<td>Ester</td>
<td>EA(Eac)</td>
<td>Ethyl alcohol</td>
<td>141-78-6</td>
</tr>
<tr>
<td></td>
<td>Iso-BA(1-Bac)</td>
<td>iso-Butyl acetate</td>
<td>110-19-0</td>
</tr>
<tr>
<td></td>
<td>BCA</td>
<td>Butyl cellosolve acetate</td>
<td>112-07-2</td>
</tr>
<tr>
<td>Ketone</td>
<td>MIBK</td>
<td>Methyl iso-butyl ketone</td>
<td>108-94-1</td>
</tr>
<tr>
<td></td>
<td>Anone</td>
<td>Cyclohexane</td>
<td>78-93-3</td>
</tr>
<tr>
<td></td>
<td>MAK</td>
<td>Methyl n-amyyl ketone</td>
<td></td>
</tr>
<tr>
<td>Poly alcohol</td>
<td>A-PME(PEC)</td>
<td>Ethyl cellosolve</td>
<td>100-80-5</td>
</tr>
<tr>
<td></td>
<td>B.C</td>
<td>Butyl cellosolve</td>
<td>117-76-2</td>
</tr>
<tr>
<td></td>
<td>PNA</td>
<td>Methoxy propional acetate</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Topasol P-160</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SC#100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

폴리머, 제31권 제2호, 2007년
결과 및 토론

도장 성능에 의한 인조 검토를 위하여 비정형화되고, 반복적인 도장 성능해가 발생하는 안의 반복적인 인조 발생 규명을 위하여, ABS수지, 사출, 도장, 사출, 도장, 사출, 각 부분별 영향도 파악 및 생산공정의 제제화를 하였다.

현상의 ABS수지 측면 영향도 파악을 위하여, 사출, 도료, 도장 요인을 고정하였을 때 유동성 변화위치가 가장 좋은 결과를 보였으며, 30% 수준의 성능저하량을 실험한 결과가 있었다. ABS수지 변화 인자는 기본수지 변경, AN 함량 변경에 의한 내화성 감소 및 전반적 변화 인자 중 유동성 함량이 가장 우수한 결과를 얻었다. 따라서, 수지촉면에서 근접한 벽은 기본유용성을 유지하는 조건에서 유동성 함량이 성능저하함으로 가며, 향후 수지 개발의 방향이 될 것이 생각된다.

사출공정 인자별(공정도수, 사출기 형계, 게이트 사상지점) 검토결과 금형도수 사출 시간(15℃ 수준), 불량률이 30% 수준 감소하였으며, 형계상성 성능은 변화없이 없었고, 사출 후 제품으로부터 스프루, 머니를 분리하는 사상지점에 따른 성능저하 성능한 결과를 확인하였습니다. 성능저하 부위 확인결과 게이트 부위보다는 중정면에서 성능저하가 발생되고 있어 사출작업 조건 중 향후 수지 및 모양 조건의 중요성을 인식하였다. 사출 형계에 의한 사출인자를 각각으로 생각하였으나 실험결과는 영향이 크지 않는다는 결론을 얻었다. 금형도수에 따른 불량성 인자는 매우 크며, 특히 사출지 작업시 충분한 금형 압축력으로 인한 성능저하 가능성이 크다는 등 사출 공정에서의 성능저하 인자의 구체화는 연구상에서 생각된다. 요약하면, 금형도수 조절, 사출 작업조건, 사출공정 조건의 표준화 필요성을 확인하였다.

도료 및 시나리오 검토는 폐인트 업체와 공동으로 진행하였으며, ABS수지, 사출, 도장인자별 고정시고 시나리오 변경에 따른 수지 및 수지 변경, 형계, 사출기 형계, 게이트 사상지점의 영향도 파악하였다. 사출공정 조건의 영향도 파악을 위하여, 사출작업중 사출속도, 도료 두께변 인자를 고려한 결과 결과 도장상태가 모두 정상상태로, 임계점에서의 검출 결과에 따라 불량이 발생하지만 도장조건이 적합할 때는 정상적으로 적합하다는 결과를 얻었다. 현상에서 적용 중인 사출기 형석, 형계 결정과 계절변경에 따른 사출작업상태의 일정성을 얻을 수 있었다. 사출공정 검토를 위하여, 사출정도 및 사출량, 도료 두께변 인자를 고려한 결과 결과 도장상태가 모두 정상상태로 임계점에서의 검출에 따라 불량이 발생하지만 도장조건이 적합할 때는 정상적으로 적합하다는 결과를 얻었다. 현상에서 적용 중인 사출기 형석, 형계 결정과 계절변경에 따른 사출작업상태의 일정성을 얻을 수 있었다. 사출공정 검토를 위하여, 사출정도 및 사출량, 도료 두께변 인자를 고려한 결과 결과 도장상태가 모두 정상상태로 임계점에서의 검출에 따라 불량이 발생하지만 도장조건이 적합할 때는 정상적으로 적합하다는 결과를 얻었다.

현상의 영향도 사출상의 기본 성분의 유체 준법형 영향을 위하여 현상에서 주로 사용되는 점격평가법에 의한 실험 결과를

![Figure 4. The test method of ESCR.](image)
ABS수지(시란) 표면 외관 품질에 많은 영향을 주고 있음을 Figure 5에서 확인하였다. 표면 평은 및 모폴로지 변화에 많은 영향을 주는 용제는 MEK, TOL, DAA, Acetone, XYL, EA 등이었다. 시너 및 용제 종류별 혼합액의 용해도와 혼합상태 취별도 차에 따른 영향을 이론 및 실험 결과를 통해 파악하였다. 시너 종류별로 ABS수지의 용해도 차와 혼합상태 취별도 균형을 Figure 6에서 확인하였다. 계열별로 시너 처방단계 취별도 차가 있으며, 내화학 성 실험결과는 U(하강기) > PD > TH > U(등강기) 순으로 코르크가 발생하였다. 용제 종류별로 상대 취별도 용해도 상수와의 관련성을 Figure 7에서 확인하였으며, 크락 발생이 큰 용제를 곧은 글로스로 구분하였다. ABS수지의 용해도 상수는 18.9 Mpa\(^2\)으로 Table 1과 같이 계산하였다. 시너별 취별도 차는 식 (1)로 구하였다.

\[\Delta \theta \text{(The Hildebrand solubility parameter)} = |\sigma_{\text{ABS수지}} - \sigma_{\text{시너}}| \]

(1)

시거나로서 용제의 chemical group별로 ABS수지의 내화학성 크락에 미치는 영향을 실험실에서 알아 보기 위하여 ABS수지와 일반적으로 사용되는 용제를 산정하여 영향도 평가를 위한 내화성 실험 결과, 높은 취별도 (0.4~1.2%) 범위에서 실험한 신용값 변화 결과로 곧 하고 낮은 취별도 (0.3~0.6%) 범위에서 실험한 신용값 변화 결과는 기존반 변형의 차이로 인해 약간의 차이를 나타내며 전체적으로 비슷한 가동을 보여 주었다. ABS수지의 크랙에 가동적인 영향을 미치는 인자는 ABS수지의 종류나 변형의 변화보다는 사용된 용제의 화학적, 물리적 특성(chemicals의 functional group, ABS수지와 사용된 용제의 용해도 차, vapor pressure, 용제의 화 학 구조)에 의한 영향이 확인되었다. 개발된 환경 하에서 ABS수지의 크랙에 영향을 적게 미치는 용제를 chemical group별로 정리 하면 hydrocarbon류 > alcohol류 > ester류 > ketone류 > poly- alcohol류이며, 특히, 저분자 polyalcohol류는 ABS 도장용 용제로 사용시 수지에 대한 크랙의 위험성이 극히 높으므로 가급적 사용을 피하는 것이 좋은 것으로 Figure 8에서 보이 주었다. Mono- alcohol류는 낮은 변형 범위에서 변형의 영향을 많이 받으며, critical strain이 0.4% 근辺일 가능성이 높다. 이는 알코올유가 변형이 없을 때는 단독으로 polymer molecular chain을 disso- ciating할 만한 에너지 준위를 가지지 못하거나, 고분자 사이가 양을 받아 에너지 barrier의 준위가 낮기 때문에 에너지 barrier를 넘을 수 있기 때문에 크랙이 진행된다. 이때 고분자 사이를 공극하는 알 코올의 활성은 -OH이다. 한편, polyalcohol에 붙은 -OH 경우 는 일반 알코올의 -OH 보다 oxygen이 전자를 빼는 힘이 강하게 되어 -OH의 hydrogen이 이탈하기 쉬워서 나머지로 라디칼 생성이 쉬워 이와 같은 반도상에서 고분자 사이를 공극하여 낮은 변형 영역에서도 ABS수지를 공극하여 크랙을 유발할 수 있을 것으로 생각된다. 개발된 환경하에서는 용제의 vapor pressure가 용제와 ABS수지의 접촉시간을 최우적으로 매우 중요한 인자로 작용하나, 일정한 환경 하에서 실험 결과는 상이한 것으로 판단된다. 따라서, 도장 시 도막의 film formation에 따라 도장용 용제의 취별시간이 달라지므로 film formation 시간과 온도가 매우 중요한 바가 될 것으로 판단된다. 용제의 critical strain은 0.5% 이하에서 좋
재하며, 변형 0.5% 이상에서는 큰 차이가 없는 것으로 나타났다.

ABS수지의 환경 의존성 검토 실험결과 온도 별로, 도장 압착해 따르는 총합강도, 강도 단위수도 Figures 9, 10에서 확인하였다. 환경변화 즉 외기 온도 변화 및 도장에 따라서 급격한 물성 저하를 감안하여, 제품 설계 시 충분한 환경 요인 검토의 중요성을 확인하였다.

결 론

본 연구를 통해 ABS수지 성능저하에 영향을 미치는 ABS수지, 사출가공, 시나, 도장 등 각 영향 인자를 실험실험 및 산업현장에서 확인하고 검토한 결과, 접촉 시나에 의한 영향도가 가장 큰 인자임을 확인할 수 있었다. 혼합용액(시나) 본성, 재질별로 성분 자체가 바뀌는 경우를 일반적으로 확인되었으며, 동일 재질에 사용되는 시나 내내에서도 각 재질 전반을 확인됨으로써, 급격한 성능저하 영향받을 가능성을 시사하고 있다. 현재 사용하는 혼합용액(시나) 내에는 파인트의 성능, 혼합 상대축발도, 용해도 순으로, 신라 내 각 재질 성분별로 ABS수지에 대한 크랙, 평음, 휘발도 차이를 확인하였다. 급변 연구 결과를 토대로 페인트업체와 공동으로 최적의 시나 처방을 개발하고, 도장 현장에 적용하여 개선 정도를 확인하였고, 후후 ABS수지에 적합한 시나개발의 발판을 마련하였다.

모든 휘발성(도장, 증가, 도금, 전자) 경우 ABS수지에 접촉되는 시나는 기본적으로 점착성이 강한 용제로 구성되어 있으므로, 만약 전향인이 ABS수지, 사출, 휘발성, 접촉 chemical 등 미세한 변화가 있어도 성능저하로 연결될 소지가 있으므로, 전 부분에 대한 관리 강화의 필요성을 급변 연구를 통해서 확인할 수 있었다.

ABS수지의 환경의존성 검토 결과 도장 유무에 따른 총합강도 및 강도의 급격한 변화를 확인함으로써, 사용환경에 대한 관리 강화의 필요성을 확신하였다. 실제 도장제품의 경우 환경에 따른 물성변화 쪽이 매우 커서 제품 설계 시 충분한 검토가 필요함을 느꼈다. 근본적인 성능저하 해결 방법으로는 환경요인을 고려한 제품설계가 요구되며, 현재의 측면에서도 환경학과 환경요인,공정측정, 공정단계 등 제품을 설계하면 안전한 작업이 될 수 있을음을 알 수 있었다.

참 고 문 현