Synthesis and Water Repellency of Polymers with Fluorinated Alkyl Group and Isocyanate Group

Chang-Hoon Baek, Jong-Yun Kong, Seok-Hee Hyun, Yong-Jin Lim*, and Woo-Sik Kim†

Department of Polymer Science, Kyungpook National University, Daegu 702-701, Korea

*Digital Textile Printing Division, Korea Dyeing Technology Center, Daegu 703-016, Korea

(Received March 11, 2005; accepted July 11, 2005)

Abstract: The copolymers were prepared by the emulsion copolymerization of fluoroalkylacrylate-stearylacrylate-m-isopropenyl-α,α′-dimethylbenzyl isocyanate (TMI) in order to obtain water-repellent polymers. The respective copolymerization rates of the three monomers considerably depended upon the use of the nonionic emulsifier and the nonionic-cationic mixed emulsifier, and the optimum conditions were obtained. The particle sizes of the copolymers were in the range of 105 to 222 nm. The particle sizes of the copolymers prepared by the use of the mixed emulsifiers were smaller than those of the copolymers prepared by the use of the nonionic emulsifier. The reactions of both TMI-α-methyl acrylamide and TMI-cellulose did not take place. However, the reaction of TMI-n-butylaniline occurred. The water contact angles before and after washing were 139° and 133°. Therefore, the copolymer showed good durability for nylon and PET.

Keywords: fluorinated alkyl acrylate, isocyanate group, emulsion copolymerization, durable water repellency, contact angle.

1. 서론

불소나몬자는 탄소-불소결합에너지를 가까이 놓는 등의 에너지에 대한 저항력이 크기 때문에 우수한 내성성, 내약성 및 내열성을 나타내며 탄소-불소 원자의 거기에 따라 불소가 고온에서 상호연결이 작아져 비검착성, 저포장력, 저마찰성이, 방수 및 방수성 등의 특성을 갖는다.1,2 이와 같은 성질로 인해 불소고분자는 우수한 광물성, 전자장산성 및 비료화를 비롯한 합성광물에서부터 동기성의류나 코팅재 등에 일상생활에 이르기까지 광범위하게 이용되고 있다.

심유에 이용되는 방수제는 제1세대로서 waxy 재료가 있고 제2세대로서 실리콘 고분자의 있으며 제3세대로서 불소화 알킬아크릴레트와 방화비닐을 함유하는 불소화 알킬아크릴레트 공중합체 방수제가 이용되고 있다. 제3세대 방수제는 방수성은 물론 내구성, 동기성도 우수하다. 그러나 이 방수제를 심유에 코팅한 후 약화를 하지 않으면 방수비닐을 방해할 뿐만 아니라 방수성의 방출과 동시에 방화비닐 단위에 이중결합의 생성으로 인해 코팅 표면이 약간 갈색으로 변하는 환경성을 보여주지 못한다. 한편, m-isopropenyl-α,α′-dimethylbenzyl isocyanate(TMI)는3,4 비닐기와 이소시아네이트기를 가지는 특수한 단량체이다. 이 단량체는 비닐기의 α-탄소에 배합기와 α,α′-dimethylbenzyl isocyanate기를 가지게 되면 이 중합정방에 의해 단독융합을 하지 않지만 공중합은 얻어가는 것으로 알려져 있다.5,6 아울러 그 이소시아네이트기는 주위에 두 개의 배합기 때문에 쪽모를 방수비닐을 사용하지 않는 한 40℃ 이하에서는 물과 거의 반응하지 않으므로 그대로 보고되고 있다.7,8 그러나 높은 온도에서 TMI의 이소시아네이트기가 허드록시기를 가지는 다른 이 미드기와 방해의 이소미네르기를 가지는 나일론과 반응하지만 불소합물 아크릴레이트 단위와 TMI 단위를 가지는 공중합체는 안전나 나일론의 내구성 방수제가 될 수 있을 것이다. 아울러 화합물로 제

*To whom correspondence should be addressed. E-mail: wskim@knu.ac.kr
조한 분소함유 아크릴레이트-TMI 공중합체의 TMI단위의 이소시아네이테기 및 섬유사이에 유효성이 관여하는지가 궁금하여, 반초 관여한다면 이것은 이 공중합체의 내구 반응성을 증가시키는 요인이 될 수 있을 것이다.

따라서, 본 연구에서는 내구 반응성을 가진 고분자의 합성하기 위해 TMI-볼소화 알킬아크릴레이트-알킬아크릴레이트를 유화공중합하여 볼소화 알킬기와 이소시아네이테기를 가진 고분자 라텍스를 제조하고 이 라텍스를 섬유에 고정하여 섬유에 대한 물질 접촉 각을 조사하였다. 또한 합성된 고분자 라텍스와 샘플로스 및 납론 각각의 반응성을 검토하기 위해 모델반응으로서 아민-TMI 아미드-TMI 및 cellobiose-TMI의 각각의 반응을 온도에 따라 조사하였다. 아울러 합성한 고분자 라텍스의 특성화를 위해 입자의 크기와 라텍스유액으로부터 분리한 고분자의 열적성질도 조사하였다.

2. 실험
2.1 시약

PENPE 1.2 g, LTMAC 0.81 g, FA 9 g(0.0216 mol) 및 SA 7 g(0.0216 mol)을 넣었다. 그 다음에 용액으로 DPG 3.7 g, 비이온 유화체 PENPE 1.2 g, 이소프로판올을 30%로 용해하여 있는 액이 온 유화체 LTMAC 0.81 g 즉 순수한 LTMAC 0.24 g 및 순수(3차 중류 수) 30 mL을 넣었다. 이 경우 비이온 유화체의 양이 온 유화체 무게비는 1:0.2였다. 이 비이온의 혼합물을 교반과 압착을 이용하여 유효시켰다. 이와 같이 유효한 혼합물을 거치시 교반기와 온도계가 장착된 Figure 1의 플러스크에 넣고 고온기계를 동작시키면서 여기에 개시되 AAPDC 0.1224 g(4.5*10^{-4} mol)을 3 mL의 순수에 미리 녹여 놓은 것을 부압한 후 65 °C에서 교반하면서 일정시간 동안 공중합하였다. 미비온 유화체의 양이 온 유화체의 무게비가 1:0.5 경우의 공중합에서는 비이온 유화체의 양에서 그 비가 1:0.2 경우의 공중합에 사용한 비이온 유화체의 양을 그대로 사용하였고 양이온 유화체는 이소프로판올을 음체에 30% 함유한 LTMAC을 20 g을 사용하였으나 다른 조건은 유화체의 무게비가 1:0.2 경우와 동일하게 하였다. 미비온 유화체를 넣은 공중합의 경우에는 양이온 유화체만 사용하지 않고 다른 조건은 유화체의 무게비가 1:0.2의 경우와 역시 동일하게 하였다.

위에서 공중합을 하는 동안 각 단계의 중합진단을 구하기 위
Scheme 2. Synthesis of poly(FA-co-SA-co-TMI).
에 대해 중합시간에 따라 전환율을 구하였는데 그 결과를 Figure 2에서 5기에 나타내었다. Figure 2에서 보는 것처럼 비어온 유화제만을 사용하였을 때는 FA 단단산가 SA 단단산보다 초기의 중합전환율이 높았다. 이것은 FA가 SA보다 소수상이 더 커서 아미도 비어온 유화체 PENPE의 미세에 SA보다 FA가 더 많이 들어가기 때문인 것으로 판단된다. Figure 3에서 보는 것처럼 비어온 유화제 일정 농도에 양 아군 유화체를 포함하였을 때 FA의 중합전환율과 SA의 중합전환율 이 거의 비슷하게 되는 것을 볼 수 있었다. 이것은 아마도 미세 구성 향상에 따라 양아군 유화체 LMAC의 영향 때문인 것이다.27 온은 아미도 미세 구성 향상에 따라 양아군 유화체의 정극에 따라 나타난 결과라고 할 수 있다. Figure 4에서 보는 것처럼 비어온 유화제만을 사용해서 중합한 FA-SA-TMI의 경우에는 중합전환율 높은 순서가 TMI>FA>SA였다. 이것은 TMI와 부탈크릴레이트의 용액중에서 라디칼 중합하였을 때 TMI의 중합성성이 부탈크릴레이트의 중합성보다 크다는 것과 일치한다.28 비어온 유화체/양아군 유화체의 무게비율 1/0.2 로 하여 중합한 경우에는 Figure 5에서 보는 것처럼 TMI, FA 및 SA의 중합율이 초기에 약간 차이는 있지만 50분 정도에서는 3단량체 모두 거의 100% 중합전환율을 나타내었다. 그러면서 나타내지는 않았지만 혼합유화체의 비가 1/0.5 즉 앞의 경우보다 양아군 유화체가 보다 많이 들어가에 따라 FA와 SA의 중합전환율은 거의 같게 되어 TMI의 중합전환율이 크게 떨어지는 현상을 나타내었다. 따라서 3성분 유화고용량의 최적조건은 비어온 유화체/양아군 유화체의 무게비율 1/0.2, 중합온도는 65℃, 중합시간은 50분이고 이때의 중합전환율은 3단량체 모두 거의 100%였다. 이 최적조건의 결과도 위에서 설명한 것처럼 미세구조 현상에 초래는 양아군 계면활성제의 영향 때문일 것이다.

3.2 공정합체의 특성

폴리[FA-co-SA-co-TMI] 중에 TMI 단위가 결합되어 있는지를 알기 위해

Figure 2. Relation between conversion and time for the copolymerization of FA(50 mol%)-SA(50 mol%) using nonionic emulsifier.

Figure 3. Relation between conversion and time for the copolymerization of FA(50 mol%)-SA(50 mol%) using nonion emulsifier/cationic emulsifier (1/0.2 : weight).

Figure 4. Relation between conversion and time for the emulsion copolymerization of FA(47.5 mol%)-SA(47.5 mol%)-TMI(5 mol%) using nonionic emulsifier.

Figure 5. Relation between conversion and time for the emulsion copolymerization of FA(47.5 mol%)-SA(47.5 mol%)-TMI(5 mol%) using nonionic emulsifier/cationic emulsifier (1/0.2 : weight).

Figure 6. IR spectra of poly(FA-co-SA-co-TMI)(a) and poly(FA-co-SA) (b).
Table 1. Particle Sizes of Poly(FA-co-SA) and Poly(FA-co-SA-co-TMI)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Primary Size (nm)</th>
<th>Secondary Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly(FA-co-SA)</td>
<td>180.7</td>
<td>30.4</td>
</tr>
<tr>
<td>poly(FA-co-SA-co-TMI)</td>
<td>211.9</td>
<td>30.4</td>
</tr>
</tbody>
</table>

*Prepared using 0.02 mol of FA and 0.02 mol of SA, weight.
*Prepared using only cationic emulsifier (10:2, weight).
*Prepared using nonionic emulsifier/cationic emulsifier (1/0.5, weight).

Scheme 3. The reaction of poly(FA-co-SA-co-TMI) and poly(FA-co-SA-co-TMI) -SA
to form poly(FA-co-SA-co-TMI) -SA.

Weight (%)

Temperature (°C)

Figure 3. IR spectrum of poly(FA-co-SA-co-TMI) -SA.

Figure 2. The reaction of poly(FA-co-SA-co-TMI) -SA to form poly(FA-co-SA-co-TMI) -SA.

Figure 1. The reaction of poly(FA-co-SA-co-TMI) -SA to form poly(FA-co-SA-co-TMI) -SA.

Note: The text may require additional context or translation for complete understanding.
용하지 않는 한 반응이 일어나지 않은 것으로 생각된다.

3.4 공중합체의 물에 대한 접촉각

비어온 유해제를 사용해서 제조한 폴리(FA-co-SA)와 폴리(FA-co-SA-TMI)를 코팅한 나일론과 PET의 물에 대한 접촉각은 세탁 후에 두 종류의 공중합체 공유 120° 정도와 100° 정도였고 역시 비어온 유해제만을 사용해서 제조한 폴리(FA-co-SA)와 폴리(FA-co-SA-TMI)를 코팅한 면의 물에 대한 접촉각은 세탁전은 105°~110°였고 세탁후에는 85°~90°였다. 2.a 3.3종 공중합체의 면에 대한 접촉각이 나일론과 PET에 대한 접촉각보다 떨어지는 것은 면이 나일론과 PET보다 진수성이 높기 때문이다.

비어온 유해제에는 유해제(두께비 1:2)를 사용해서 중합의 최적 조건에서 제조한 폴리(FA-co-SA-TMI)의 세탁전의 접촉각을 Table 2. Contact Anglesa of Water before(A) and after(B) Washing Three Times for Fabrics Coated with Poly(FA-co-SA)b and Poly(FA-co-SA-co-TMI)c에 나타내어 둘. 이 표에서 보는 것처럼 그 접촉각은 나일론과 PET에 대해 세탁전에 130° 정도였고 세탁후 접촉각은 133° 정도였다. 따라서 이 3.3종 공중합체의 반응성은 상당히 우수하였다. 그러나 위의 인공 접촉각을 사용해서 제조한 폴리(FA-co-SA)의 세탁전의 접촉각도 역시 표에 보는 것처럼 나일론과 PET에 대해 120° 정도였고 세탁후 접촉각은 90° 정도였다. 이들 결과는 공중합체의 접착 고정에 관계될 수 있다고 또한 성유다양성 유해제-공중합체의 TMI의 이소사이아의 상호작용에 관계될 수 있을 것인가 하여 다음 폴리(FA-co-SA-TMI)가 폴리(FA-co-SA)보다 인차가 적고 양이온 유화체는 하전을 가지기 때문이다.

4. 결론

수용성 리다간계계 AACD의 비어온 유화체 PENPE를 사용하였을 때 65℃에서 FA(50 몰%)-SA(50 몰%)의 공중합체 SA-FA의 순으로 얻어졌고 FA(47.5 몰%)-SA(47.5 몰%)-TMI(5 몰%) 공중합계 SA-(FA-TMI) 순으로 얻어졌으며 두 공중합계는 200MV 이상에 중합이 완료되었다. 반면에 이 개시화의 비어온 유화체-양이온 유화체 LTMAC의 두께비를 1.0으로 하여 사용하였을 때 65℃에서 2.3성분의 공중합계 SA와 FA가 거의 같은 속도로 일어났고 3성분계의 공중합계에서도 SA, FA 및 TMI가 거의 같은 속도로 일어났으며 후자의 공중합계는 60분 이내에 중합이 완료되었다.

이 공중합계의 TMI 단위의 이소사이아와 나일론의 단면의 아미노기의 바콜반응으로서 TMI와 μ-부탄산이 음의온에 반응하였으나 TMI와 μ-페닐에테네아미드 그리고 TMI와 cellobiose에는 반응하지 않았다.

공중합체의 러텍스 인차기는 비어온 유화체를 사용하였을 경우 폴리(FA-co-SA-TMI)가 폴리(FA-co-SA)보다 작았다. 비어온 액시온 혼합 유화체를 사용하였을 경우에도 인차기는 3.3종 공중합계가 2.3종 공중합계보다 작았다. 비어온 유화체를 사용한 경우와 혼합 유화체를 사용한 경우 공중합체의 입자기의 후자가 전자보다 작았다. 이들 결과는 TMI와 양이온 유화체에 기인하는 미 lesb의 크기와 관련된 것이다. 접촉각은 혼합 유화체를 사용한 경우 폴리(FA-co-SA-TMI)는 나일론과 PET에 대해 세탁 전후에 130° 이상으로 우수하였다.

감사의 글 : 본 연구는 한국과학기금 자연과학연구회 연구비 지원으로 수행되었으며 연구비지원에 감사 드립니다.

참고문헌