티올기를 함유하는 칼레이트 수지의 합성 및 특성
박인환·방영길·김경만·주혁종

한국화학연구원, *중앙대학교 고분자공학과
(2003년 1월 24일 접수, 2003년 6월 3일 재택)

Synthesis and Characterization of Chelating Resins Containing Thiol Groups

In-Hwan Park†, Young-Kil Bang, Kyoun-Mahn Kim, and Hyeok-Jong Joo*

Korea Research Institute of Chemical Technology, P. O. Box 107, Yuseong, Daejeon 305-600, Korea

*Department of Polymer Science and Engineering, Chungnam National University, Gwang-dong, Yuseong-ku, Daejeon 305-764, Korea

e-mail : ihpark@pado.kriкт.re.kr

(Received January 24, 2003; accepted June 3, 2003)

초록 : 폴리(스티렌-코-다이닐벤젠) 수지 페닐기와의 클로로메틸화를 통해 메틸티올기를 도입한 수지 (I), 폴리(스티렌-코-에틸 메타아크릴레이트-코-다이닐벤젠) 공중합체의 페닐기와 에스테르기에 클로로메틸화 반응을 거쳐 각각 메탈티올기를 도입하여 중금속 이온들과의 배합결합에 필요한 공간개념을 허용한 수지 (II) 및 폴리(스티렌-코-다이닐벤젠) 수지의 폴리ហ모에러를 클로로실봉화한 후, 소독음하이드로솔로이드로 티오설폰산화한 수지 (III) 등 3가지 종류의 타이유트 구상형 수지를 합성하였다. 이에, 이들 칼레이트 수지들에 대한 중금속 이온의 흡착성능을 평가한 결과, 티올기 함유 I형 칼레이트 수지는 Hg^{2+}에 대해서만 선택적 흡착성을 보였고, 티올기 함유 II형 칼레이트 수자는 Hg^{2+}에 대한 흡착성능이 보다 향상되었으며, Cu^{2+}, Pb^{2+}, Cd^{2+} 및 Cr^{3+} 등의 몇몇 중금속 이온들에 대해서도 약간의 흡착능을 보였 다. 다른 한편으로, 친수성의 티오설폰산기 함유 III형 칼레이트 수지는 효율적 흡착제로서 Hg^{2+}, Cu^{2+}, Ni^{2+}, Co^{2+} 및 Cr^{3+} 등의 중금속 이온들에 물론, 특히 Cd^{2+} 및 Pb^{2+}에 높은 흡착능을 보였다.

ABSTRACT : Three kinds of macro-recticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(styrene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (II) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendant phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity for mercury ions. However, the chelating resin (II) with thiol groups showed more effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu^{2+}, Pb^{2+}, Cd^{2+} and Cr^{3+}. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg^{2+}, Cu^{2+}, Ni^{2+}, Co^{2+}, Cr^{3+} and especially Cd^{2+} and Pb^{2+}.

Keywords : chelating resin, thiol group, poly(styrene-co-divinylbenzene), poly(styrene-co-methyl methacrylate-co-divinylbenzene), heavy metal ions.

1. 서론

티올 작용기를 함유하는 칼레이트 수지는 Ag^{+}나 Hg^{2+} 이온 등에만 선택적 흡착능이 매우 큰 관계로 그 응용성이 제한적이고 관련연구도 그리 많지 않다. 일반으로 티올계 칼레이트 수지는 폴리(스티렌-코-다이닐벤젠)
기본수지에 클로로메틸기를 도입한 뒤, 티오우레아를 반응시키고 알키리 처리하여 티우-league를 얻거나, 클로로메틸화된 폴리스티렌이나, 2,4-디클로로-6-(4-아이로네)-1,3,5-트리아민을 혼합고분자로 KSH, NaSH 등을 반응시키고 티얼기를 얻었다. 이외의 탄소기를 함유하는 클로로에틸 수지들에 대한 연구들은 클로로메틸화된 폴리(스티렌-co-디머닐벤젠)을 기본 수지로 하여 macrocyclo poly(thioether)를 함유한 클리어트수지, 육식물을 함유하는 아크릴痖 탄량체를 이용하는 탄산계 클리어트 수지, 또는 dimercapto propyl amaminohydroxy 기름을 함유하는 클리어트 수지 등들이 있다. 상기 연구들을 살펴보면 기본수지 구조에서 탄산기의 공간배열이 단순하여 다가 금속이온과의 배위결합에 필요한 공간을 확보하지 못하였으나, 티알기의 임체효과가 적어 배위결합이 제한되는 것으로 알려졌고, 또한 지금까지의 티 알기 항독 수지들은 무엇보다도 수용액에 대한 화학적 부족하여 화학성에 대한 개선이 필요하였다.

본 연구는 탄소계 클리어트 수지의 화학성과 화합성에 흥미를 가지고 구상한 폴리(스티렌-co-디머닐벤젠) 수지의 패널리와 주체에 탄산를 도입하여 공간배열을 확보하거나 수지의 진공성화함으로써, 특정 중금속이온에 대한 화합성 개선 여부를 살펴보고자 하였다. 즉, 구상형 폴리(스티렌-co-디머닐벤젠) 수지로 메탈타고린을 도입한 수지를 만들었다. 이 탄산수지의 주체에는 트리킬 수지의 중동태체와 탄산의 중간두체기에 필요한 효율공간을 확보하도록 하는 등의 작용기의 효과적인 공간배열을 위하여 폴리(스티렌-co-메틸 메타아크릴레이트-co-디머닐벤젠) 기본수지에 탄산기를 도입하였다. 또한, 탄소계 클리어트 수지의 진공성은 개선하기 위하여 구상형 폴리(스티렌-co- 다미닐벤젠) 기본수지에 오선판산기를 도입한 클리어트 수지를 제조하였다. 이어서, 여기서 제조된 클리어트 수지를 모두의 특정 중금속이온에 대한 화합성으로 비교 평가가 이루어졌다.

2. 실험

시약. 기본수지의 합성에 사용된 스테인 (St)과 메틸 메타아크릴레이트 (MMA)의 탄량체들은 Aldrich Chemical 사의 1급 시약을, 다미닐벤젠 (DVB) 가교재는 Tokyo Kasei 사의 1급 시약을 사용하였고, 번조알킬황산산 (BPO) 중합계제는 Acros사의 1급 시약을, 투구엔과 이소옥탄 등의 기공형성제와 흙족시메틸산을로스 (Aldrich, 50 cp) 분산 안정제는 Aldrich 사의 1급 시약을 정제 없이 각각 사용하였다. 기본수지의 환원반응을 위한 NaBH₄와 염소화를로로셀론 반응을 위한 클로로메틸체질에 테르 (CMME), ZnCl₂ 및 클로로시에스온 (CSA) 등은 Junsei Chemical 사의 1급 시약을 정제하지 않고 사용하였다. 또한, 탄소계체질 티오우레아 (TU) 및 NaSH 등도 Aldrich 사의 1급 시약을 정제하지 않고 사용하였다. 한편, 1,2-디 클로로에탄, 테트라히드로프난 (THF), N,N'-디메틸아세트 아미드, 벤젠, 1,4-디옥산 등의 반응용제의 기관의 반응보조 시약은 Acros 사의 EP급 시약을 이용하였으며, 함성된 클리어트 수지의 중금속이온에 대한 화합성을 평가하는 중금속 화합물로는 lead (II) nitrite, mercury (II) acetate, cadmium (II) nitrate, copper (II) chloride, nickel (II) chloride, cobalt (II) nitrate, chromium (II) nitrate 등 Aldrich 사의 1급 시약으로, 일정 농도의 수용액을 만들어 사용하였다.

향성. 폴리(St-co-DVB)와 폴리(St-co-MMA-co-DVB)의 기본수지 제조 : 폴리(St-co-DVB)와 폴리(St-co-MMA-co-DVB)의 2 종류의 기본수지를 얻기 위하여 0.2 wt%의 흙족시메틸산을로스가 용해된 분산액을 30분 이상 교반하여 안정한 분산성을 만들고, St (19.97 g, 0.192 mol), DVB (3.51 g, 0.027 mol)와 St (16.02 g, 0.154 mol), MMA (3.96 g, 0.039 mol), DVB (3.51 g, 0.027 mol)의 각각의 혼합물에 BPO (0.23 g, 0.001 mol), 이소옥탄 (기공형 성제, 사용되는 탄량체 중량에 대하여 100 vol%) 등을 각각 첨가한다. 수비 (α = 1.8)를 일정히 한 상태에서 각 혼합물을 약 30분 이상 교반 분산시킨 후, 80 °C에서 8시간과 90 °C에서 2시간 현탁층합시킨 후, 반응물을 종류수와 메탄올을 사용하여 충분히 세척하여 분율을 제거하고 60 °C의 진공도에서 24시간 이상 건조시킨 후, 구상형의 기본수지를 각각 23.08 g (Table 1, run 1; 수율: 98.30 wt%) 및 23.18 g (Table 1, run 3; 수율: 98.70 wt%) 얻었다. 폴리(St-co-DVB) 수지의 클로로메틸화와 탄화 (I) 14-16 : 상기 향응을 얻은 80-120 mesh 범위의 폴리(St-co-DVB) 수지 (10.02 g)를 1.2-디클로로에탄 (100 mL)에 30분 동안 간단시키고, ZnCl₂ (5.02 g, 0.037 mol)의 존재하에에서 클로로메틸체질에 테르 (9.98, 0.123 mol)를 첨가하여 작하산 후, 70 °C에서 12시간 동안 반응시키었다. 반응 종료 후 메탄올, 물 및 테메틸에테르로 충분히 세척한 후, 60 °C의 진공전에서 24시간 이상 완전히 건조한 후, 클로로메틸화된 생성물 12.54 g (Table 2, run 3; 영소 함량: 14.4 wt%) 얻었다.

상기의 클로로메틸화된 폴리(St-co-DVB) 수지 (10.02 g)에 1,4-디옥산 (60 mL), 티오우레아 (5.62 g, 0.074 mol)
을 넣어 85 °C에서 1시간 동안 이소티우로나염을 만들고, 이것을 동일온도에서 메탄올 40 mL, 1N-NaOH 수용액 50 mL를 적재하고 30분 동안 분해하였다. 이후, 여과를 분리하고, 1.5 N-HCl 수용액 35 mL를 넣어 50 °C에 서 30분 동안 중화를 거쳐 약간수화하였다. 이어, 여과된 고형물을 메탄올, 물 및 디에틸에테르로 충분히 세척한 후, 60 °C 진공오븐에서 24시간 이상 완전히 건조하여 티오작용기를 가진 칼리드 수지 (I) 9.93 g (Table 2, run 3) : 유황함량 8.6 wt% : 전환율 : 66.4%를 얻었다.

폴리(St-co-MMA-co-DVB) 수지에 함유된 펜닐 고리와 에스테르기의 티올기 도입 : 1) 폴리(St-co-MMA-co-DVB) 수지에 함유된 에스테르기의 원인17-19 : 폴리(St-co-MMA-co-DVB) 기본수지 (Table 1, run 3, 20.00 g)에 THF (120 mL), NaBH₄ (5.0 g, 0.1132 mol)과 ZnCl₂ (8.0 g, 0.058 mol)을 넣고, 약 30분간 교반 후, N,N-디메틸아세트아미드 (4.5 g, 0.051 mol)를 천천히 적재 후, 80 °C에서 4시간 이상 반응시켰다. 반응 종료 후 여과를 분리하였고, 5 wt%의 몽은 염산 용액을 천천히 추가한 다음 메탄올과 물로 충분히 세척한 후, 60 °C의 진공오븐에서 24시간 동안 완전히 건조시켜 헤클스테릴화된 수지 19.20 g (전환율 : 62.0%)를 얻었다.

2) 헤클스테릴화된 폴리(St-co-MMA-co-DVB) 수지에 함유된 펜닐고리의 염소화20-22 및 티올화 반응14-16 : 상기 1) 항에서 얻은 수지 (15.03 g)에 ZnCl₂ (7.53 g, 0.055 mol)과 1,2-디클로로 에탄 (150 mL)을 넣고 30분 동안 흐르게 반응시키고, 클로로메틸메틸에테르 (15.03 g, 0.187 mol)를 천천히 적재 후, 70 °C 에서 12시간 동안 염소화 반응을 시켰다. 반응 종료 후 메탄올, 물 및 디에틸에테르로 충분히 세척한 후, 60 °C 진공오븐에서 24시간 이상 완전히 건조하여 펜닐고리가 클로로메틸화된 수지 생성물 18.07 g (Table 3, run 3; 염소합량: 12.3 wt%)을 얻었다.

이어서, 펜닐고리가 클로로메틸화된 상기 2)항의 수지 (15.02 g)에 벤젠 (60 mL)을 넣고, 질소기류하에서 약 30분 동안 분해시켜, 피리드 (13 g, 0.164 mol)을 넣고, 티 오닐클로라이드 (10 g, 0.084 mol)를 냉각조에서 약 10분에 걸쳐 서서히 적재하여, 이후 2시간 동안 염소화 반응을 시킨다. 반응종료 후 가로바 증류수와 아세톤, 디에틸에테르로 세척 후, 60 °C의 진공오븐에서 24시간 이상 건조하여 염소화된 수지 18.72 g (Table 3, run 3; 염소합량: 14.2 wt%)을 얻었다.

 penet리고리에 에스테르기군이 약간 모두가 클로로메틸화 된 폴리(St-co-MMA-co-DVB) 수지 (10.02 g)에 1,4-디옥산 (60 mL), 토오우레아 (6.17 g, 0.081 mol) 등을 넣고, 85 °C에서 1시간 동안 이소티우로나염을 만들고, 이것을 동일온도에서 메탄올 40 mL, 1N-NaOH 수용액 50 mL를 적재하고 30분 동안 분해하였다. 이후 여과를 분리하고, 1.5N-HCl 수용액 35 mL를 넣어 50 °C에 서 30분 동안 중화를 거쳐 약간수화하였다. 이어 폐쇄된 고

폴리(St-co-DVB) 수지의 티오설폴산화,30-32 : 상기 항에서 얻은 폴리(St-co-DVB) 수지 (10.01 g)를 1,2-디클로로에탄 (40 mL)에 30분 동안 폐중시켜, 1,2-디 클로로에탄 (20 mL)에 희석한 클로로설폴산 (12.35 g, 0.091 mol)을 천천히 적재하고, 60 °C에서 4시간 동안 반응 시킨다. 이후, 반응 혼합물과 파라더이온의 기관이 발생하고, 60 °C에서 8시간 동안 반응시키고 메탄올과 물로 충분히 세척 후, 60 °C의 진공오븐에서 24시간 이상 완전히 건조시켜 티오설폴산수지의 수지 함유수지 (III) 16.67 g (Table 4, run 3; 유황함량: 26.0 wt% : 전환율 : 89.6%)를 얻었다.

분석

결과기 절이 및 폐중의 측정33,34 : 결과기 절이는 한국공업사 KSA 0602의 방법을 참고로 하여, 상온에서 일정량의 수지를 용기에 넣고 동축서치를 끄는 동안 다음, 결과기 절이를 5회 측정하고, 그 평균치로 산출하였다.

한편, 폐중기는 10 mL 메스링크를 이용, 0.1~0.5 g의 시료수지를 평정하게 채운 후, 결과기 상단의 눈금기 (cm)를 읽고, 채운된 수지 높이에 따라 빠른 높이 양류수를 넣은 후, 상온에서 24시간 침체시킨다. 이후 폐중된 수지 최상단의 눈금기 (cm)를 읽어 다음 식에 의해 계산하였다.

$$
\text{폐중기} = \frac{\text{폐중기, 상단높이 (cm)}}{\text{전조기, 상단높이 (cm)}}
$$

구조 및 성분 : 구조형 분석을 위해 수지의 측정값과, 그 수지를 기본항으로 하여 분해한 결과, 클로로메틸화 반응, 염소화 반응, 티올화 반응 및 티오설폴산화 반응 등을 거쳐서 각각 칼리드 수지를 얻었는데, 이 매, 천장된 칼리드 수지의 클로로메틸기, 티올기 및 티오설폴산기 등의 구조확인에는 Bio-Rad사의 Digilab-165 FTC-165 IR 분광분석기를 이용하였고, 각 중성합체의 조성분석을 위해 각 반응전후의 무게변화의 측정을 하였으며, 아울러
일부 시료는 Fisons사의 1108 모델 원소분석기로 C, H, O, S 등에 관한 원소함량 분석을 행하였다.
중금속 이온의 흡착능도 \(^{26}\)은 우선, 평가조건인 pH 5 (1mole/1007와 1mole/1007의 조절)에서 석출되지 않는 각 이온들의 용해도를 검만하여 Pb\(^{2+}\), Hg\(^{2+}\), Cd\(^{2+}\), Co\(^{2+}\) (각 1,000 ppm), Ni\(^{2+}\) (750 ppm), Cr\(^{3+}\) (500 ppm) 등의 표준용액을 만들었다. 중금속 이온들의 흡착능은 합성된 칼리트수지 (I, II, III) 각 0.2g을 정확히 측정하여 용기에 넣고, 여기에 각기 해당하는 중금속 이온 용액 (20 mL)을 주입하고, 25 \(^\circ\)C에서 24 시간 동안 시험용고 반응시킨 후, 흡착전후의 해당 금속 이온의 농도 차이를 이용하여 아래의 식으로부터 산출하였다. 이때, 흡착후의 농도는 Pb\(^{2+}\), Cu\(^{2+}\), Cd\(^{2+}\), Co\(^{2+}\), Ni\(^{2+}\), Cr\(^{3+}\) 중금속 이온들의 흡착후 여액을 Perkin-Elmer 사의 2380 모델을 이용하여 원사 흡광 분광법으로 측정하였고, Hg\(^{2+}\)에 대해서는 MHS-10 Mercury/Hydride System을 이용하여 측정하였다.

\[
\text{흡착능 (mg/g-resin)} = \frac{(\text{흡착전 농도} - \text{흡착후 농도 (ppm)} \times 10^{-3} \times 20)}{\text{사용수의 중량 (g)}}
\]

3. 결과 및 토크
중금속 이온과의 칼리트 형성이 금속 이온의 종류, 칼리트 작용기의 종류에 의하여 본질적으로 결정되지만, 필자의 최근 연구들에서 보는 바와 같이 고분자 채에 적절한 공간자 (spacker)를 활용하여 그 작용기의 입체적 배열을 바꾸었을 때, 다가 금속 이온들에 대한 흡착능이 그 작용기 항량은 물론, 그 화학구조상의 입체적 배열에 많은 영향을 받고 있음을 알 수가 있다.\(^{26,21}\)

이와 관련하여 본 연구에서도 Ag\(^+\) 및 Hg\(^{2+}\) 등의 제한된 금속 이온에만 흡착능을 갖고 있는 티움 히우 케리트 수지를 이용하여, 각 절 중금속 이온들에 대한 흡착능의 항량을 시도하였다.\(^{3}\) 즉, 기온이 많이 환동되는 풀리(St-co-DVB)계 기본수지로 유동 작용기를 도입하여, 그 천수도를 높이거나 유동 작용기 항량 및 입체적 배열 등을 최적화 하기로 하자 Scheme 1과 같은 요령으로 구조를 달리는 3 종류의 macro-reticular (MR) 형의 구상 칼리트 수지를 합성하였다.

먼저 적절한 평온성과 평온성 기계적 강도를 갖는 MR 형의 구상 폴리(St-co-DVB) 수지를 합성하던기공형성계 없이 DVB 항량을 변화시키면서 공중합 반응을 하였는데, DVB 항량을 10 wt% 미만으로 사용하면 계속되는 칼리트 작용기관들을 도입하는 개정반응에 기계적 강도가 약화하여 쉽게 부서지게 되며, 20 wt% 이상의 높은

가료에서도는 이후의 개질반응시 평온성 (1,2-디클로로 에탄)에 대한 평온성가 낮아지면서 작용기 부가를 위한 반응점들이 부족해지고 작용기 부가반응의 수율이 감소되었기에, 이후에도, 시험조건을 거쳐서, 가료제 사용량은 15 wt% 내외가 최적조건인 것을 발견하였다.\(^{30,21}\) 이 가료제 항량을 기준으로 구형수지들의 비교학적을 더욱 크게 하기 위하여 투레온과 이소옥탄 등의 2 가지 기공형성체를 총합작업한 항당에 대하여 5~120 vol% 범위까지 각각 적용하여 결과물 밀도 변화를 Figure 1에 나타내었다.
Figure 1에서 보는 바와 같이 폴리스테렌을 양은매인 톨루엔을 기공형성계로 사용할 경우, 전 범위에서 열처리 기공분포가 균일했으며, 그 사용량이 증대될수록 구상형수지의 겔보기 밀도가 점차 낮아졌다. 반면, 빈용매인 이소옥탄을 기공형성계로 사용하면 총량량체 함량에 대하여 50 vol% 가지는 점차 감소하다가, 이 부분에서 겔보기 밀도의 변화는 급격히 저하되었으며, 이후는 빈용매 양이 많아지면서 공중합 과정에서 일부 고분자 삭출(백택)이 이루어지고, 다시 완만하게 낮아졌다. 이 때, 이소옥탄의 사용량이 120 vol% 이상이면 폐윤된 수지는 기계적 강도가 조금씩 저하되는 것이 관찰되었다. 여기서, 기공형성계의 사용량은 총량량체에 함량에 대하여 100 vol%로 정해졌다.

다른 한편으로, 톨루엔과 이소옥탄 등 기공형성계의 사용량을 총량량체에 함량에 대하여 100 vol%로 하고 가교재 함량을 변화시키고 겔보기 밀도의 변화를 살펴본 결과는 아래의 Figure 2와 같다. Figure 2에서 보는 바와 같이 톨루렌 기공형성계의 경우는 폴리스테렌에 대한 양은매로 양화한 폐윤상태에서 가교반응이 진행되며, 가교재 함량이 25 wt% 이전까지는 그 사용량이 증대될수록 분자간 간격이 치밀해지면서 점차 겔보기 밀도가 증가하였다. 그러나, 이소옥탄 기공형성계의 경우는 폴리스테렌에 대한 빈용매로 사용량이 증대될수록 폐윤효과가 적은 상태에서 불균일한 가교반응을 이므로써, 전자가 담당 25 wt% 이전까지는 겔보기 밀도가 오히려 점차 감소하였다. 여기서, 가교재 사용량이 25 wt%를 넘게 되면 폐윤이 전혀 없는 다공성 수지가 된다.

Figure 1 및 2의 결과로부터, 스트렌 (St), 메틸 메타야크릴레이트 (MMA), 디비닐벤젠 (DVB) 등 공중합에 사용되는 총량량체에 대하여 기공형성계로 이소옥탄을 100 vol%, 가교재로 디비닐벤젠을 15 wt%로 조정, 공중합 반응을 하여 Table 1에서 보는 바와 같이 기본수지들을 얻게 되었다. 그 결과, Table 1에서 보는 바와 같이 얻어진 수질의 차이들이 크지 않았고, 또 공중합 반응 전후, 원료와 생성물 간의 산소수분의 함량변화의 차이가 매우 적게 나타났다. 그 동안의 연구결과들로부터 스트렌과 디비닐벤젠 사이의 공중합은 매우 약화되었으며, 각 성분들은 원쪽으로 치우침이 없이 비교적 균일한 분포를 얻을 수 있음을 보였다.1,2,3 여기서, 생성된 수지의 성분합 계산에서는 디비닐벤젠과 같은 이작용기를 갖는 단량체가 스트렌과 같은 일작용기의 단량체에 비해 공중합 반응성이 더욱 약화해서 미반응은 없을 것으로 가정하였다.

폴리(S-co-MMA-co-DVB) 공중합체 기본수지에 탄소기를 도입하기 위하여 먼저, 방향족 성분은 직접 콜로데미터를 한 후, 허드록시мет릴화된 지방족 성분의 염소

<table>
<thead>
<tr>
<th>Table 1. Copolymer Beads Obtained from Polymerization of Styrene, Methy1 Methacrylate and Divinylbenzene</th>
</tr>
</thead>
<tbody>
<tr>
<td>run</td>
</tr>
<tr>
<td>St</td>
</tr>
<tr>
<td>2.000</td>
</tr>
<tr>
<td>3.000</td>
</tr>
<tr>
<td>4.000</td>
</tr>
<tr>
<td>5.000</td>
</tr>
<tr>
<td>6.000</td>
</tr>
<tr>
<td>7.000</td>
</tr>
<tr>
<td>8.000</td>
</tr>
<tr>
<td>9.000</td>
</tr>
<tr>
<td>10.000</td>
</tr>
</tbody>
</table>

*Calculations from feed composition. *Measured by elemental analysis.

DVB content calculated from feed composition.

DVB content existed in the resin, which was calculated from the difference in weight before and after the reaction.(wt% is given in brackets).
화 반응을 하게 된다. 이 때, 역습으로 반응시키면 아래의 설명에서처럼 Lewis 산촉매 존재하에서 클로로메틸화 반응이 상대적으로 많아지게 되어, 일부 가교반응이 이루어지면서 상기 Scheme 1의 II형 수지의 반응수율이 현저히 저하하게 된다. 폴리(St-co-MMA-co-DVB) 공중합체 기본수지 내에 MMA의 에스터 성분이 있으 면 폴리(St-co-DVB) 수지에 비하여 메틸렌 자동가 반응을 방해하여 클로로메틸화 반응을 높이기도 하여,34 기본수지와 클로로메틸화의 합합비율을 조절하거나35 황산촉매 존재하에서 공중합체로 역학제1의 후안 산화 제2절을 사용하여 클로로메틸화 반응의 전환율을 높이 기도 한다.36,37

방향족 성분의 클로로메틸화와 관련해서는 폴리(St-co-DVB)의 공중합체 기본수지의 Figure 3에서 보는 바와 같이 1,2-디클로로에틸로 반응시켜 클로로메틸화 (염소화) 반응을 시켰는데, 반응시간이 지남에 따라 염소함량이 증가되다가, 일정시간이 경과하면 더 이상의 염소함량의 증가가 이루어지지 않고 오히려 줄어들었는데, 이것은 클로로메틸화 반응에 의한 폴리에틸렌의 농도가 줄어들면서 자동가 반응에 의해 염소함량이 소폭이나며 점점 줄어들게 되었다고 볼 수 있다.38,40 따라서, 수온을 높게 염을 수 있는 시간대에서 이 염소화 반응을 정지시키는 요령이 필요하였다. 또한, Figure 4에서는 최대 염소함량을 얻는 시간대까지 반응시간 (12시간)을 일정히 하고, 반응온도만의 변화를 준 결과, 클로로메틸화제1 클로로메틸메틸에테르의 비점 (57 ℃) 이상의 반응물의 환류가 이루어지는 조건에서 보다 높은 염소 함량의 생성물을 얻을 수 있었다.

다른 한편으로, Figure 5에서 보는 바와 같이 1,2-디클로로에틸화 폴리에틸렌 반응용매와 클로로실론산을 이용하는 설화화 반응은 황산이나 발산황산과 달리, 그 반응온도 (60 ℃) 가 상대적으로 낮아도, 반응자체는 용이하게 진행되었으며, 4시간 경과 후로는 반응점이 감소되어 더 이상 반응은 이루어지지 않았다.41

Scheme 1에서 보는 바와 같은 I, II 및 III형 수지의 클로로메틸화와 클로로실론산화를 거친 폴리스테르계 기본수지에 틈은 및 틈은의 작용기를 도입하였는데, 전자의 반응을 거친 클로로메틸화 염소수지는 1,2-디 클로로에팀 반응용매중에서 NaSH와 양호하게 혼합성 을 보이지 않기 때문에 틈은화제로는 틈은의 수지의 선택이 바람직하였다. 별도로 실험한 결과, NaSH에 의한 틈은화 전환율이 최대 10%로 나타나 구상형 수지의 내, 외 부에 틈은화 반응이 양호하게 진행하지 못하였다. 반면, figure 4는 클로로메틸화 반응수지를 0 ～ 24시간의 반응시간에 따라 염소함량의 변화를 보여주고 있는 그림이다. 이 그림에서, 염소함량은 반응시간이 늘수록 증가하는 경향을 보이는데, 24시간 후에는 거의 plateau를 유지하고 있다. 반면, figure 5는 클로로에틸화 반응용매와 클로로실론산화를 이용하여 염소화 반응을 수행한 후, 반응물의 환류가 이루어지는 조건에서 보다 높은 염소 함량의 생성물을 얻을 수 있었다.

Figure 3. Dependence of chlorine content upon reaction time in the chloromethylation of poly(St-co-DVB) [Table 1, run 3] at 70 ℃ for 24 hrs.

Figure 4. Dependence of chlorine content upon reaction temperature in the chloromethylation poly(St-co-DVB) [Table 1, run 3] for 12 hrs.

Figure 5. Dependence of sulfur content upon reaction time in the sulfonation of poly(St-co-DVB) [Table 1, run 3] using chlorosulfonic acid at 60 ℃.
1,4-디옥산-알коло륨 혼합용액에서 티오우레아와 클로로메틸화된 기본수지와의 탄화 반응 전환율은 66%로 상대적으로 양호하였다.2,15,16 한편, 후자의 클로로식 폐화된 수지는 전자의 클로로메틸화된 수지보다 더 큰 극성을 갖고 있기 때문에 탄화계로 NaSH을 사용한다.

해도 1,2-디클로로탄 반응용량에의 혼합성, 폐화된 기본수지에 대한 접근성 등이 비교적 아주 얇혀서 탄화 반응시 89% 전후의 높은 전환율을 얻을 수 있었다. 또한, 클로로선폐는을 갖는 넓한 생성물은 공기 중에서 유입되는 극히량의 수분이 존재할 경우에 NaSH의 SH와 물의 -OH 간에 경쟁반응이 야기될 수 있는데, 이는 과량의 분말형 NaSH를 활용함으로써 해결할 수 있었다. 별도 실험물 분석의 실험결과에 의하면 클로로선폐화된 작용기의 10 wt% 내외 정도가 가수분해되어 일부 실론산기화 하는 것으로 나타났다. 그러나, 이러한 일부 실론산기화의 일부 존재는 오히려 최종 생성물인 탄화계 킬레이트 수지의 친수성을 더욱 증가시키며 중금속 이온이 흡수된 수용액과의 접촉성을 크게 향상시키며 해양 중금속 이온의 흡착도 향상되며, 일부 실론산기화의 인해 Cu²⁺, Pb²⁺, Cd²⁺, Cr³⁺ 등 중금속 이온들의 흡착이 이루어질 수 있다.42

구조확인과 관련해서는 아래 Figure 6에서 보는 바와 같이 폴리(St-co-DVB) 기본수지의 원료로 이용할 경우, (b)의 600~700 cm⁻¹에서 클로로메틸기의 C-Cl 피크가, (c)의 2550~2600 cm⁻¹에서 Scheme 1의 I형 수지의 탄화기의 피크가, (d)의 600~700 cm⁻¹에서 III형 수지의 티오설폐산기의 피크가 각각 확인되었다. 또, 동일 요령으로 폴리(St-co-MMA-co-DVB) 공중합체를 기본수지로 할 경우, 먼저 MMA 성분에서 1740 cm⁻¹의 에스터를 희드록시기로 변환한 후, 방향축과 지방축 성분을 순서적으로 클로로메틸화하여 탄화기를 도입하게 된다. Figure 7에서 보는 바와 같이 (c), (d)의 600~700 cm⁻¹에서 클로로메틸기의 C-Cl 피크가, (e)의 2550~2600 cm⁻¹과 600~700 cm⁻¹에서 II형 수지의 탄화기 피크가 각각 확인되었다.

상기 Scheme 1에서의 3가지 유형의 탄화 작용기를 갖는 카리트 수지를 살펴보면, 먼저, 스테인의 패널러리에 탄화 작용기를 도입한 I형 수지는 수용액중의 금속이온과 친화력이 작용에도 불구하고, Hg²⁺ 이온에 대한 선택 흡착·제거 능력은 아주 탁월하다고 알려져 있다.3 II형 수지는 I형 수지의 단순한 배열에 변형을 주어 측면 탄화 작용기에 스페이스자(Spacer) 개념을 도입한 것이며, I형 수지의 개선형이다. III형 수지 는 탄화기 주위에 친수도를 높인 것으로 I 및 II형의 수지에 비해 티오설폐산기의 실론구조와 일부 실론산기의 존재로 인해 상대적으로 수용액과의 친화력을 방해하겠으며, 본 실험을 통하여 합성된 3 가지 유형의 탄화계 카리트 수지의 평가를 위하여 각종 산업폐수에 흡수되어 각종 공해 및 인체에 치명적인 질병을 유발시키는 Hg²⁺, Cu²⁺, Pb²⁺, Cd²⁺, Ni²⁺, Co²⁺, Cr³⁺ 등의 중금속 이온들을 선택하고, 상기에서 얻은 탄화계 카리트 수지들에 대한 흡착특성을 Table 2에서 각각 살펴보았다.

Figure 6. IR spectra of chelating resins with thiol groups. (a) Poly(St-co-DVB) bead, (b) Chloromethylated (a), (c) Thiolated (b) [I : Table 2, run 3], and (d) Thiosulfonated (a) [III : Table 4, run 3].

Figure 7. IR spectrum of a chelating resin with thiol groups. (a) Poly(St-co-MMA-co-DVB) bead, (b) Reduced (a), (c) (b) with chloromethyl groups, (d) More chloromethylated (c), and (e) Thiolated (d) [II : Table 3, run 3].
Table 2. Adsorption Ability for Heavy Metal Ions of Poly(St-co-DVB)-based Chelating Resins Containing Thiol Groups

<table>
<thead>
<tr>
<th>No.</th>
<th>run</th>
<th>type</th>
<th>composition (mol)</th>
<th>content (wt%)</th>
<th>adsorbed capacity* (mg/g-resin)</th>
<th>swelling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>St</td>
<td>0.040</td>
<td>4.74</td>
<td>18.19</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>DVB</td>
<td>0.105</td>
<td>4.81</td>
<td>18.98</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Cl</td>
<td>0.142</td>
<td>4.85</td>
<td>21.23</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>S</td>
<td>0.170</td>
<td>4.93</td>
<td>21.42</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>St</td>
<td>0.201</td>
<td>5.00</td>
<td>21.70</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>DVB</td>
<td>0.233</td>
<td>5.09</td>
<td>20.38</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Cl</td>
<td>0.269</td>
<td>5.14</td>
<td>18.78</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>S</td>
<td>0.305</td>
<td>5.13</td>
<td>16.88</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>St</td>
<td>0.352</td>
<td>5.14</td>
<td>15.45</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>DVB</td>
<td>0.386</td>
<td>5.14</td>
<td>13.60</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

*Resin 0.2 g, 20 mL of each metal solution (pH 5), room temp. 24 hrs.
DVB content existed in the resin, which was calculated from the difference in weight before and after the reaction (wt% is given in brackets).

Table 3. Adsorption Ability for Heavy Metal Ions of Poly(St-co-MMA-co-DVB)-based Chelating Resins Containing Thiol Groups

<table>
<thead>
<tr>
<th>No.</th>
<th>run</th>
<th>type</th>
<th>composition (mol)</th>
<th>content (wt%)</th>
<th>adsorbed capacity* (mg/g-resin)</th>
<th>swelling ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>St</td>
<td>0.100</td>
<td>0.142</td>
<td>4.85</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>MMA</td>
<td>0.100</td>
<td>0.159</td>
<td>4.89</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>DVB</td>
<td>0.100</td>
<td>0.174</td>
<td>4.78</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Cl</td>
<td>0.100</td>
<td>0.208</td>
<td>5.08</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>S</td>
<td>0.100</td>
<td>0.244</td>
<td>5.19</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>St</td>
<td>0.100</td>
<td>0.290</td>
<td>5.29</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>MMA</td>
<td>0.151</td>
<td>0.362</td>
<td>5.39</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>DVB</td>
<td>0.233</td>
<td>0.473</td>
<td>5.46</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>Cl</td>
<td>0.430</td>
<td>0.761</td>
<td>5.60</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>S</td>
<td>1.907</td>
<td>1.395</td>
<td>5.71</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

*Resin 0.2 g, 20 mL of each metal solution (pH 5), room temp. 24 hrs.
DVB content existed in the resin, which was calculated from the difference in weight before and after the reaction (wt% is given in brackets).

기본수지에 탄화기가 붙어있는 형태로 탄화기 주변에 친수성 인자가 없어 수용액과 풀이 잘 이루어지지 못했으며, 원자간의 풀이 크며도 불구하고 이 칼리에트 수지
는 모두가 수면위쪽으로 또는 현상이 발생하였다. 따라서, 수용액에서 각 수지들의 폐수량 측정은 불가능하였다. 지급까지의 연구결과와 동일하게 Hg^{2+} 의 실험대상은 금속 이어도 흡착능을 보이지 않아 해당 금속 이어도 선택성을 보였지만, 이런 이유로 해서 동일구조로는 큰 흡착능의 증대를 이룰 수 없다. 또한, 플리(St-
co-MMA-co-DVB) 기본수지에 있는 벤젠을 공간 자료로 하여 탄화기가 지그재그 배열을 하도록 유도한 Scheme 1의 Ⅱ형 수지의 흡착능 실험결과를 Table 3에 보았다. Table 3에서 보는 바와 같이 고분자 주체에
서 볼 때, 탄화기가 지그재그로 배열되면, Hg^{2+}의 흡착능
향상은 물론, 이외의 Cu^{2+}, Pb^{2+}, Cd^{2+}, Cr^{3+} 등의 다른 중
금속 이어도에도 흡착특성을 보였다.73 상기에서 설명
한 바와 같이 생성물인 칼리에트 수지의 MMA 성분 중
에 염소화 반응이 안된 비반응 흩드록시메틸기가 일부
존재한다 하더라도, 이것은 수용액 (물)의 -OH와 동일인
자이기 때문에, 중금속 이어도에 대한 흡착특성과 직접 관
련이 없다는 것을 염두에 두 수 있다. 혹, 그 인자가 부
분적으로 첨수성을 부여했다 하더라도 배위결합을 통한
흡착능 향상과는 관련이 없을 것으로 여겨진다. 따라서,
일부 첨수성 향상이 수지의 온도에 도움도 주지겠지만,
거기서 오는 흡착능 변화보다는 탄화기 지그재그로 배
열됨으로 인해 Hg^{2+}는 물론 흡착되는 여타의 중금속 이어
도에 대한 보다 양호한 배위기능을 제공했다고 사료된
다. 이와 관련하여, 탄화작용을 할당이 거의 동일하되,
로, Ⅱ형의 칼리에트 수지중에서는 스테린과 MMA 성
분비가 유사해질 때 (Table 3의 run 5), 최고의 흡착능을
나타내었다. 이 때는 스테린과 MMA의 공중합 수지 성분
비로 왜서 유사한 Table 3의 run 6보다는 Table 3의 run 5
가 양호한 흡착능을 보인 것은 수분산 공중합 시에 MMA
성분이 구성체 표면에 더 많이 배열된다는 것과 무관하
지 않음을 보였다. 이는 공간자류 벤젠으로 하는 근본
탄화기 측면의 지그재그 배열과 더 관련이 된다고 사
Table 4. Adsorption Ability for Heavy Metal Ions of Chelating Resins Containing Thiolsulfonic Acid Groups

<table>
<thead>
<tr>
<th>run</th>
<th>composition (mol)</th>
<th>content (wt%)</th>
<th>swelling ratio</th>
<th>adsorbed capacity (mg/g-resin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[H] 1.00</td>
<td>0.040</td>
<td>1.10</td>
<td>41.14 43.12 40.45 57.20 37.77 37.31 37.70</td>
</tr>
<tr>
<td>2</td>
<td>[I] 1.00</td>
<td>0.089</td>
<td>1.12</td>
<td>43.47 58.08 74.52 60.62 37.82 51.76 41.57</td>
</tr>
<tr>
<td>3</td>
<td>[I] 1.00</td>
<td>0.142</td>
<td>1.14</td>
<td>45.00 59.84 83.19 72.61 43.60 53.83 44.35</td>
</tr>
<tr>
<td>4</td>
<td>[I] 1.00</td>
<td>0.170</td>
<td>1.15</td>
<td>50.22 61.92 78.70 79.92 45.92 55.74 46.92</td>
</tr>
<tr>
<td>5</td>
<td>[I] 1.00</td>
<td>0.201</td>
<td>1.16</td>
<td>51.84 63.87 83.07 82.80 40.35 52.04 47.01</td>
</tr>
<tr>
<td>6</td>
<td>[I] 1.00</td>
<td>0.233</td>
<td>1.17</td>
<td>48.87 52.62 81.40 79.22 41.65 47.94 44.35</td>
</tr>
<tr>
<td>7</td>
<td>[I] 1.00</td>
<td>0.269</td>
<td>1.18</td>
<td>47.16 51.58 62.97 75.34 40.88 44.92 42.87</td>
</tr>
<tr>
<td>8</td>
<td>[I] 1.00</td>
<td>0.305</td>
<td>1.19</td>
<td>45.18 45.50 44.84 67.22 36.87 37.69 37.56</td>
</tr>
<tr>
<td>9</td>
<td>[I] 1.00</td>
<td>0.352</td>
<td>1.20</td>
<td>42.57 41.38 35.63 57.75 33.83 35.56 37.67</td>
</tr>
<tr>
<td>10</td>
<td>[I] 1.00</td>
<td>0.386</td>
<td>1.21</td>
<td>37.53 36.25 28.98 48.99 28.98 31.42 34.77</td>
</tr>
<tr>
<td>11</td>
<td>[I] 1.00</td>
<td>0.424</td>
<td>1.22</td>
<td>20.82 13.88 21.21 18.24 37.72 32.30 15.12 48.26 8.72 53.64</td>
</tr>
</tbody>
</table>

*Resin 0.2 g, 20 ml of each metal solution (pH 5), room temp. 24 hrs. DVB content existed in the resin, which was calculated from the difference in weight before and after the reaction (wt% is given in brackets). A chelating resin with sulfonic acid groups.

References

학회 제27권 제4호, 2003년
47, 3153 (1982).
25. Y. Kamitori, M. Hojo, R. Masuda, T. Inoue, and T. Izumi,
(1996).
33. Y. Shimano, K. Sato, D. FuKui, Y. Onodera, and Y. Kimura,
34. K. S. Kim, D. W. Jeon, and K. H. Park, J. Kor. Pharm., 18, 69
(1988).
35. G. S. Bylina and T. A. Nikolaeva, Vysokomol. Soedin., Ser. A
36. L. Feistel and G. Popov, G. Schwachula, Plaste Kautsch., 30,
37. Y. V. Svetkin, M. V. Burnistr, A. N. Talanov, O. E. Degtyarev,
V. E. Zak, and N. S. Malovichko, Khim. Tekhnol.(Kiev), 3, 58
39. M. Camps, M. Chatzopoulos, J. M. Camps, and J. E. Montheard,
41. N. Kabay, M. Demircioğlu, H. Ekinci, M. Yüksel, M. Mehmet,
42. A. Spiro, C. A. Shelley, E. P. Horitz, R. Chiarizia, J. Michael,
44. B. Saha, M. Iglesias, I. W. Cumming, and M. Streit, Solvent
227943c.