The Structural Effects of Acidic Comonomers in pH/Thermal Sensitive Copolymer Based on N-Isopropylacrylamide on Their LCST Behavior

Hang-Kyu Cho, Byung-Soo Kim, and Si-Tae Noh†
Department of Chemical Engineering, Hanyang University, Ansan 425-791, Korea
†e-mail: stnoh@chollian.net
(Received October 21, 2000)

ABSTRACT: pH/Thermal sensitive copolymers with the various acidic comonomer compositions composed of N-isopropylacrylamide (NIPAAm) with acrylic acid (AAC), 2-acrylamido glycic acid (AAmGAc), and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) were synthesized by free radical polymerization. In this study, to characterize the effect of different acidic comonomer composition and pH on the lower critical solution temperature (LCST) behaviors of their copolymers, phase transition experiments were performed with a thermo-optical analyzer (TOA). The phase transition temperature (Tc) of aqueous poly(NIPAAm-co-AAC) solution was lowered with increasing the ionization of the acid group in AAC, that is, the ionized state induced the electrostatic repulsion of ionized groups. In contrast, when AAmGAc was introduced into PNIPAAm, Tc was little changed at pH 1-3, whereas climbed up significantly from pH 1 to pH 3. In the range of pH 6-10, Tc was lower than that of pH 3-5. This result was considered to be "Ionic Screen Effect" and this effect had been also observed in the case of poly(NIPAAm-co-AMPS).

Keywords: pH/thermal sensitive polymer, lower critical solution temperature (LCST), poly(N-isopropylacrylamide), hydrophobic interaction, hydrogen bonding.
서론

자극감응성 고분자란 외부의 신호극장에 민감하게 감응하여 기질체의 변화을 일으키는 고분자라 할던 데,
3.2.1 외부자극원으로 전기장, 자기장, 전류, 온도,
광 등과 같은 물리적 자극과 pH, 이온, 및 화학적
자극 등이iasi 있으며, 이에 대한 응답으로써 고분자가 수용액상에서 상전이, 절에서의 부피변화
및 광학적 변화 등이 있다. 4,10 즉, 이러한 자극민
감성 고분자는 단분자 혹은 축적된 형태로 압축전달
시스템, 분리기술 및 효소들 등의 고정화에
응용되고 있으며, 여러 종류의 자극에 동시에 감응하
는 고분자에 대한 연구도 진행되고 있다.

온도를 자극원으로 하는 열민감성 고분자는 특정
온도렌 frank에서는 높은 용해도와 폐생성을 나타내다가
특정온도 이상에서 늘은 용해도와 상관없이 나타내는
LCST와의 상당한 관계에서ворот는 늘은 용해도와 수축성을 보이거나 특정온도 이상에서 늘은 용해도
와 폐생성을 나타내는 상한임계용해온도(U CST,
upper critical solution temperature)의 양상을 나
타내는 고분자로 나온다. 4,11,12 LCST의 대표적인 고
분자로 PNIPAAm은 32 ℃부근에서 급격한 상전이
를 일으킬 뿐만 아니라, -OH, -COOH, -CONH2,
-SO3H와 같은 수용성기와 가진 산성 고분
자체와 부합도를 자주리더를 만족함으로써 공중합체내에 도입
할 경우 pH,17 공중합체의 조성,18 염농도,19 용액,20 및
이온화21 23 등에 민감한 선행 공중합체와 가고체의 도
입으로 고분자 절을 제조할 수 있어 이에 대한 연구
가 활발히 진행되고 있다고 한다.

Huglin 등은 24,25 acrylic acid (AAC)와 methacyric acid (MAAc)를 산성
공중합체로 도입한 PNIPAAm계 수화계에 대한 pH와 가고체 함량에
따른 폐생작용을 보고한 바 있다. 결과로는 산성
공중합체의 농도가 증가함수록 점의 폐생작용이 증가한
다는 사실과 MAAc의 경우 주로는 있는 매질기의
소수성 작용을 한다는 사실을 보고하였다. 또한 이와
같이 pH에 따라 폐생작용이 변하는 현상은 AAC와
MAAc의 카르복실산과 AMPS의 수분산기의 pH에
따른 이온화가 그 원인으로 작용한다고 언급하였다.
Mario는 26,29 산성 공중합체를 도입한 PNIPAAm 공
중합체의 poly(N-acryloyl-L-leucine) (PNAL)에
서 소수성 상호작용의 원인으로 아마이드기의 양성
화 반응과 아미노기기의 상호작용, 그리고 PNAL
의 경우 아마이드기와 아미노기기 사이에 존재하는
알킬기와 소수성 작용을 한다고 보고한 바 있으며,
또한 이와 같은 상호작용으로 인해 야기될 수 있는 엔
탈피 및 엔트로피 변화를 고분자내의 구조적 변화에
기인한다고 설명하였다. Bae 등도 1,18,20,31 PNIPAAm
과 acrylamide (AAM)계 수화계를 제조하여 각각
하수성기와 소수성기를 가진 공중합체를 도입한 후
LCST를 측정한 결과 고분자의 구조가 LCST를 결정
하는 데 중요한 역할을 한다는 사실을 보고하였다.

본 연구에서는 pH와 온도 동시 민감성 고분자를
제조하기 위하여, 기존의 많은 보고가 있는 AAc와
자의 다루어진 고분자로 AAmGAc 및 AMPS를 산성
공중합체로 PNIPAAm계 공중합체를 제조하고, pH
및 각각의 구조적 차이가 있는 산고 공중합체의 항암
이 상전이기동 등에 영향에 대하여 현미경과
hot stage로 구성된 TOA를 이용하여 수용액의 및
투과도 변화를 정밀하게 비교 분석하였다.

실험

시약. NIPAAm (Aldrich Chemical Co.)는 벤
젠(Samchun Pure Chemical Co.)과 n-헥산
(Duksan Chemical Co.) (70 : 30) (v/v)용액에서
제조한 2회 반복하여 냉동 건조시킨 다음 사용하
였다. AAC (Junsei Chemical Co.)는 시료 내에
합유되어 있는 수분을 제거하기 위해 60 ℃에서 감상
종합하여 사용하였고, AAmGAc (Aldrich Chemical
Co.)와 AMPS (Sigma Chemical Co.)는 추가
로 정제하지 않고 사용하였다. 종합용매로 사용한 액
탄물(Samchun Pure Chemical Co.)은 NaOH와 함
께 분열 종합하여 수분을 제거한 다음 사용하였고,
종합용계시체로는 benzyol peroxide (BPO, Fluka
Chemical Co.)와 2,2-azobisisobutyronitrile
(AIBN, DuPont Chemical Co.)를 메탄올에 제조
하여 사용하였다. 수분이 다른 원중용액은 구입한 그대
로로 pH 측정을 한 후 오차범위 내에서 사용하였다.

공중합체의 합성 및 분자량 분석. Poly(NIPAAm-
co-AAA)를 제조하기 위해 교반기와 운도계, 그리고,
응축기가 장착된 500 mL 반응조에 액탄을 160 mL
Scheme 1. Synthesis and structure of NIPAAm based copolymers.

물 넣은 후, NIPAAm, AAc 및 개시제를 Table 1
에서와 같이 일정량 투입하여 Scheme 1(a)과 같이
공중합하였다. 용존 산소를 청소로 치환하기 위해 상
온에서 30분간 청소를 투입하면서 서서히 교반한 뒤,
청소 분위기 하에서 5시간 동안 80 ℃에서 교반하였
다. 반응 생성물을 rotary evaporator로 용액을 어
느 정도 끓이시킨 후, 젤도 상승이 관찰되면 diethyl ether에 2회에 걸친 재질전으로 미반응 단단체와
불순물을 제거하여 회수하였다. 그리고 회수된 빵색
의 질전물을 다시 여과하여 50 ℃의 진공오븐에서 3
일 동안 건조 보관후 사용하였다.

AAmGAc와 AMPS를 각각 산성 공중량체로 도
입하여 Scheme 1의 (b)와 (c)와 같이 제조하였다. 단량체의 조성은 Table 1과 같이 하였다. 합성 및
정제과정도 poly(NIPAAm-co-AAc)의 정제과정과
동일하게 하였다.

PolyNIPAAm과 NIPAAm과 산성 공중량체들로
이루어진 공중합체들의 분자량과 분산도는 gel permeeation chromatography (GPC)를 이용하여 수평
균 분자량 (M_n)과 분자량 분포 (M_w/M_n)를 측정하
여 Table 1에 정리하였다.

상전이 온도 (T_g)와 상거동 계층. 합성한
Table 2. The Feed Composition of Poly(NIPAAm-co-AAc), Poly(NIPAAm-co-AAmGAc), and Poly
(NIPAAm-co-AMPS)

<table>
<thead>
<tr>
<th>code</th>
<th>NIPAAm (mol)</th>
<th>acid comonomer</th>
<th>molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AAc (mol)</td>
<td>AAmGAc (mol)</td>
</tr>
<tr>
<td>PNIPAAm</td>
<td>0.177</td>
<td>0.007</td>
<td>0.4</td>
</tr>
<tr>
<td>AAc-4</td>
<td>0.172</td>
<td>0.015</td>
<td>0.4</td>
</tr>
<tr>
<td>AAc-8</td>
<td>0.157</td>
<td>0.031</td>
<td>0.4</td>
</tr>
<tr>
<td>AAc-25</td>
<td>0.146</td>
<td>0.049</td>
<td>0.4</td>
</tr>
<tr>
<td>AAmGAc-4</td>
<td>0.168</td>
<td>0.007</td>
<td>0.4</td>
</tr>
<tr>
<td>AAmGAc-8</td>
<td>0.159</td>
<td>0.014</td>
<td>0.4</td>
</tr>
<tr>
<td>AAmGAc-16</td>
<td>0.142</td>
<td>0.028</td>
<td>0.4</td>
</tr>
<tr>
<td>AAmGAc-25</td>
<td>0.124</td>
<td>0.041</td>
<td>0.4</td>
</tr>
<tr>
<td>AMP-1</td>
<td>0.174</td>
<td>0.002</td>
<td>0.4</td>
</tr>
<tr>
<td>AMP-2</td>
<td>0.171</td>
<td>0.004</td>
<td>0.4</td>
</tr>
<tr>
<td>AMP-4</td>
<td>0.165</td>
<td>0.007</td>
<td>0.4</td>
</tr>
<tr>
<td>AMP-8</td>
<td>0.153</td>
<td>0.013</td>
<td>0.4</td>
</tr>
</tbody>
</table>

a Total weight of monomers : 20 g, EtOH : 130 mL. b Mole% of AAc, AAmGAc, and AMPS against total monomer mole. c BPO and
d AIBN as an initiator : 2.0 wt% of total monomer weight. e Not detectable.

Figure 1. Schematic diagram of thermo-optical analyzer (TOA).

PNIPAAm계 공중합체들의 수용액성에서의 pH에 따른 상전이 온도를 Figure 1과 같이 hot stage
(FP82HT, Mettler)와 편광현미경 (B×50, Olympus)으로 구성된 TOA로 측정하였다. 이때, 측정한
시료들은 각각의 pH에 따른 원충응력을 사용하여 제
조한 1 wt% 고분자 수용액을 24시간 동안 약 10 ℃
에 보관한 뒤, 모세관에 일정량을 투입, 입구를 봉
임하여 상전이 거동을 관찰하였다. 측정온도 범위는

Figure 2. Cloud-point of PNIPAAm in an aqueous pH 7 solution.

15 ℃에서 120 ℃까지 1 ℃/min의 속도로 승온하면서
비의 루프율의 변화를 정밀하게 관찰하였다.
결과 및 고찰

Poly(NIPAAm-co-AAc) 수용액의 LCST 거동에 대한 pH와 AAc 함량의 영향. 일반적으로 산성 공단량체가 도입되지 않은 PNIPAAm의 수용액의 경우, LCST 상전이 온도를 30~33 ℃로 보고하고 있으며, 상전이 온도부근에서 매우 급격하면서 불연속적으로 상전이 현상이 나타나게 된다.17 이러한 상전이 현상은 PNIPAAm을 구성하는 환농기들의 전수성과 소수성 상호작용에 매우 큰 영향을 받을 것으로 알려져 있다.

Figure 2는 pH 7에서 PNIPAAm의 수용액에
서의 빛의 투과도 변화를 TOA에 관찰한 것으로, T_p의 결정은 급격하게 투과율의 변화가 시작되는 지점의 온도를 취하였다. 또한 앞으로 언급하는 모든 상전이 그래프의 T_p는 투과율의 감소가 시작되는 지점을 취하였다. 또한 완전하게 상전이 구동이 일어나는 경우, 전이 지점에 외상을 하여 취하였다.

LCST 이하 온도에서는 PNIPAAm의 구조내 아미드기와 물과의 수소결합으로 인해서 수용액에서 용해력이 증가되어 매우 높고 투명한 용액을 형성하게 되고, 이러한 수용액은 기상관선 영역에서의 빛의 투과율이 매우 높게 나타나게 된다. 반면, LCST 이상에서는 아미드기와 물로 형성되었던 수소결합이 열에 의해서 파괴되며, 이소프로필기간의 수소결합이 증가된다.26,27,29 따라서 이러한 두 가지 상반된 상호작용이 상승작용을 일으켜 PNIPAAm과 물의 분리 현상으로 수용액이 불투명하게 되며, 이러한 상가동들은 많은 온도범위에서 유발될 수 있으며, 또한 매우 빠르고, 가르각적으로 일어나는 것이 특징이다.1,7

PNIPAAm 구조에 산성 공중합체가 도입된 경우,24 PNIPAAm의 친수성/비수성 상호작용뿐만 아니라 산성 공중합체의 상호작용이 더해서 매우 복잡한 상반성을 나타내게 되며, 상전이 온도의 변화와 다른 외부적 환경 즉, pH 변화 전해질 유무에 대한 응답도 유발이 가능할 것으로 예상할 수 있다.

AAC 함량이 4, 8, 16, 25 mol%가 되도록 합성한 poly(NIPAAm-co-AAc)들을 각각 pH 3, 5, 7, 10 완충액 하에서 온도변화에 따른 투과도 변화를 TOA로 측정한 결과를 Figure 3에 나타내었다.

Figure 3(a)는 pH 3에서 측정한 결과로 poly(NIPAAm-co-AAc)내에 AAC 함량이 증가함에 따라서 T_p는 점점 낮아지게 나타났다. 반면, pH가 5인 수용액에서는 pH 3에서의 지점과는 반대로 AAC 함양이 증가함에 따라서 T_p는 점점 상승하였으며, 이후 pH가 7, 10으로 높아지고 AAC 함양이 증가함에 따라 poly(NIPAAm-co-AAc)의 T_p는 급격히 상승하였다. pH 7, 10에서의 경우 AAC 8 mol% 이상을 함유한 경우는 상전이가 일어나지 않고 전체 측정온도범위에서 매우 높은 수용액 상태를 나타내었다.

Figure 4는 Figure 3에서 측정한 pH 영역 외에도 측정한 TOA 그래프에서 T_p를 얻어 pH와

Figure 4. Cloud-points of aqueous poly(NIPAAm-co-AAc) solutions with pH : (―●―) NIPAAm, (―■―) AAc 4 mol%, (―▲―) AAc 8 mol%, (―▼―) AAc 16 mol%, and (―○―) AAc 25 mol%.

AAC 함량에 따른 T_p 변화를 정리한 그래프이다. pH 4를 전후로 하여 poly(NIPAAm-co-AAc)의 T_p이 동은 매우 상이하게 나타났음을 알 수 있었다. 즉, pH 4이하에서는 AAC의 도입이 공중합체의 T_p를 점점 낮추게 하는 영향을 주며 반면, pH 4 이상에서는 AAC의 도입이 공중합체의 T_p를 상승시켰다. Poly(NIPAAm-co-AAc)의 이와 같은 결과는 이전에 설명하였던 PNIPAAm의 친수성/비수성 작용과 더불어 도입된 AAC의 산성기의 이온화, inter- 그리고 intra-molecular 상호작용의 영향이 매우 크게 작용하는 것으로 사료되며, 이러한 영향 등에 대하여 Figure 5에서 상가동 현상을 정리하였다.

pH 1~3영역에서는 Figure 5(a)와 같이 두 가지 형태의 상호작용 현상이 나타날 수 있다. AAC의 pKa는 대략 4.8에서 5.0으로 보고 있으며,22,23 이러한 수치는 AAC가 pH 1~3영역에서는 이온화되지 않은 형태로 존재한다는 것을 의미한다. 따라서 이온화되지 않은 형태로 존재하는 AAC 단위는 NIPAAm
Figure 5. Schematic illustration of inter- or intramolecular hydrogen bonding of poly(NIPAAm-co-AAmGAc).

다단위의 아미드기와 수소결합을 유발할 수 있으며, 이러한 수소결합 형성이 각각 Figure 5(a)의 (i) 및 (ii)에서와 같이 분자내, 분자간 결합이 가능하며, 공중합체의 소수성을 더욱 증가시키는 역할을 하는 것으로 생각되었다. 반면, Figure 4에서도 나타난듯이 pH 4에서의 거의 AAc의 농도에 의존하지 않고 공중합체의 \(T_p \)가 32 °C부근에서 형성되었다. 이는 Figure 5(b)에서와 같이 부분적으로는 AAc 단위가 이환되면서 부분도 있고, pH 1 ~ 3 영역에서와 같이 수소결합이 형성된 부분도 혼재되어 있으므로, 두 현상이 서로의 결합을 상쇄시켜버리는 작용을 하여 AAc의 함량과 무관한 \(T_p \)의 경향을 나타낸 것으로 생각되었다. 더욱 pH가 높은 염기방해기에서는 AAc 내부가 모두 이온화된 thereby 음이온 성격을 얻게 되어 고분자-고분자간의 소수성/소수성 상호작용을 저해하고 고분자-물간의 진수성/소수성 상호작용이 더욱 강하게 공중합체가 보다 강한 진수성을 나타내게 된다. 즉, Figure 5의 (c)에서와 같이 완전히 이온화된 음이온간의 반발력이 유발되어 NIPAAm의 상전을 약하게하며, AAc 함량이 일정량 이상일 경우, 상전이 현상 자체가 나타나지 않고 전 온도 범위에서 매우 많은 수용액 상태를 유지하게 된다고 해석되었다.

Poly(NIPAAm-co-AAmGAc)수용액의 LCST 균등에 대한 pH와 AAmGAc 함량의 영향. Figure 6은 산성 공중합체로 AAmGAc를 4, 8, 16, 25 mol% 함량으로 도입된 poly(NIPAAm-co-AAmGAc)를 각각 pH 3, 5, 7, 10의 완충액에서 TOA 측정을 통하여 얻은 상전이 균등을 나타낸 것이다. 산성 공중합체로 도입된 AAmGAc의 경우, 구조내 아미드기, 하이드록시기 및 신기의 편입율로 있어서 공중합체의 상전에 매우 복잡한 영향을 가질 것으로 예상할 수 있으나, 이러한 산성 공중합체의 도입에 관한 보고는 아직 없었다. 또한 AAmGAc의 pKa값은 비록 알려진 바가 없지만 glycic acid기의 pKa가 약 3.8 ~ 4.0이므로\(^{22,23}\) AAmGAc가 AAc보다 강신임을 상정할 수 있었다.

전체적으로 앞에서 언급한 poly(NIPAAm-co-AAmGAc)의 pH에 따른 상전동영과 매우 상이한 결과를 나타내었다. Figure 6(a)는 pH 3에서 공중합체내 에 AAmGAc의 함량이 증가함에 따라서 공중합체의 \(T_p \)는 점차적으로 증가하였다. 이러한 결과는 poly(NIPAAm-co-AAmA)의 결과와 상반되는 것으로, 같은 산성 공중합체라 할지라도 그것들의 이온화 상태\(^{21,22}\) 산성 단량체 함량과\(^{17}\) 경제의 깊이 및 자유도\(^{26,27}\) 등에 매우 크게 영향을 받는 것으로 생각되었다.

Figure 6(b)는 pH 5에서의 TOA로 측정한 빛의 무게의 변화를 나타낸 것으로, AAmGAc의 함량이 증가함에 따라서 매우 빨리가 크게 \(T_p \)가 상승하며, 25 mol%의 AAmGAc가 도입되었을 경우, \(T_p \)가 110 °C부근까지 상승하였다. pH 7의 경우 Figure 6(c)와 같이 AAc가 도입된 경우와는 매우 차이가 나는 상전이 균등을 나타냈다. 즉, pH 5에서의 균등한 \(T_p \)의 상승이 pH 7에서는 다시 \(T_p \)가 낮아졌다. Figure 6(d)는 pH 10에서 측정한 TOA 결
Figure 6. Effect of temperature on transmittance of aqueous copolymer solutions with pH (a) pH 3, (b) pH 5, (c) pH 7, and (d) pH 10: (●) PNIPAAm, (■) AAmGAc 4 mol%, (▲) AAmGAc 16 mol%, and (○) AAmGAc 25 mol%.

과로, T_p는 pH 7에서 나타낸 음영역대를 유지하지만, AAmGAc의 함량이 높아질수록 거의 투과도의 변화가 완만하게 일어나는 것으로 보아 상전이가 매우 완만하게 넓은 음도범위에서 형성되고 있음을 알 수 있었다.

Poly(NIPAAm-co-AAmGAc)의 pH를 달리하여 TOA로 측정한 T_p를 정리하여 Figure 7에 나타내었다. Figure 7에서 나타났듯이 poly(NIPAAm-co-AAmGAc)의 경우, poly(NIPAAm-co-AAc)와는 달리, 각 pH 완전용액 하에서는 도입되는 AAmGAc의 함량이 증가에 따라서 T_p의 상승도 일정하였다. AAmGAc의 함량이 같을 때에는 pH의
영향은 크게 pH 영역을 3부분으로 나누어

T_p의 형성이 다르게 나타났다. pH 1에서 pH 3까지는 거의 일정한 T_p를 유지하였고, 이러한 영역은 glycolic acid가 이온화 되어있지 않은 영역이었다. 반면에 AAmGAc의 도입으로 인한 매우 특이한 현상으로, pH 3에서 pH 5로 pH를 증가시켰을 때, 급격히 T_p가 상승하였으며, 이러한 상승경향은 AAmGAc의 도입량이 증가하면 할수록 더욱 큰 비율로 상승하였다. 이러한 T_p의 상승은 glycolic acid의 이온화로 인해서 친수화되기 때문으로, 상전이가 더 높은 온도에서 일어나기 때문으로 생각되었다. 그러나, pH 5 이상 pH 6, 7에서 다시 급격히 T_p의 감소가 나타났는데, 이러한 현상은 현재까지 보고된 바가 없는 매우 특이한 현상이었다. pH 7부터 pH 10까지는 대체적으로 pH 7에서의 T_p를 유지하나 Figure 6의 (d)에서와 같이 두곡도 변화곡선은 낮은 pH에서 나타났듯이 매우 불연속적으로 나타난 것과는 달리 AAmGAc의 함량이 증가함에 따라서 매우 완만하게 나타났었다.

아직까지 Figure 7과 같은 상전이 거동에 대한 자세한 보고가 없고, 해석을 위한 추가적인 데이터를 제시하지 않았지만, 대체적으로 Figure 8과 같이 도식적인 그림으로 상전이 현상에 대한 설명을 할 수 있었다. 낮은 pH 영역에서는 AAc와 같이 AAmGAc의 acid가 이온화되지 않는 형태로 존재하지만, 분자간, 분자내의 수소결합보다는, amido-glycolic acid기가 환향을 이루면서 자체적으로 수소결합을 형성하고 있기 때문으로 생각되었다. Molecular modeling을 실시한 결과 이러한 예상이 가능한 형태가 매우 안정하게 존재하는 것으로 확인하였다.

Figure 7. Cloud-points of aqueous poly(NIPAAm-co-AAmGAc) solutions with pH : (−○−) PNIPAAm, (−■−) AAmGAc 4 mol%, (−▲−) AAmGAc 8 mol%, (−▼−) AAmGAc 16 mol%, and (−●−) AAmGAc 25 mol%.

Figure 8. Schematic illustration of inter- or intramolecular hydrogen bonding of poly(NIPAAm-co-AAmGAc).
즉, 환경을 이루었을 때 하이드록실기는 분자 바깥쪽으로 배향이 이루어지지만 다른 분자와 또는 분자 내에서 수소결합의 형성은 그 농도가 희박해 단순히 T_g의 상승만 영향을 줄 것으로 생각되었다. 이온화가 이루어져 T_g의 급격한 상승은 (b)와 같이 어느 정도 이온화로 인해서 환경 구조가 깨어지면서 매우 강한 이온 반렬력을 나타낼 것으로 생각되었다. 따라서 AAc보다도 더 높은 온도에서의 상전이 온도를 나타낼 것으로 사료된다. 그러나, pH 6 이상에서의 T_g의 급격한 감소에 대한 설명은 Figure 8의 (c)에서와 같은 형태로 설명할 수 있었다. 즉, pH 5까지의 부분적인 이온화로 급격하게 T_g의 상승을 유도하
또는 pH가 높은 경우 특정 완충용액 영역에서는 염
들과의 릴레이션이 유발될 수 있었고, 따라서
(c)와 같이 유도되는 릴레이션으로 인하여 AAmGAc
자체 내에서 (a)와 같은 형태가 다시 존재하게 되어
상전이 온도가 부분적으로 이온화되었을 때보다 급격
히 낮아지는 것으로 사료되었다. 그러나, 이러한 현
상에 대해서는 추가로 보다 상세한 연구가 필요한 것
으로 생각되었다.

Poly(NIPAAm-co-AMPS)의 LCST 상전이 가동
에 대한 pH와 AMPS 함량의 영향. Poly(NIPAAm-
co-AAc)와 poly(NIPAAm-co-AAmGAc)와는 달
리 poly(NIPAAm-co-AMPS)는 AMPS 함량을 1, 2, 4, 8 mol% 까지 변화시켜가며 각각 pH 2, 5, 7, 10의 완충용액 하에서 TOA 층건한 결과를 Figure
8에 나타내었다. AMPS의 경우 정화된 pKa값은 약
직 보고된 바가 없고, 다만 arylsulfonic acid의 경우
pKa가 -6.5로32 다른 산성 공단량체에 비하여 매우
강한것으로, 소량만 산성 공단량체로 침천하여도 공
단량체의 T_m의 상승과 끝 루프도 가동에 매우 큰 영
향을 주었다.

전체적으로 AMPS가 8 mol% 이상 공단량체에 도
입된 경우, 전 pH 영역에서 어떠한 상전이 현상도
관찰할 수 없었다. Figure 9의 (a)는 pH 2에서 층
건한 TOA 결과로 AMPS의 함량이 1에서 4 mol%
로 증가할 때 따라서 T_p의 상승이 약 40 °C까지 이루
억으며, pH 4에서는 AMPS의 출판간의 이온화
로 인해서 급격한 T_p의 상승이 나타났다.

AMPS 함량이 1, 2 mol%인 경우에는 AMPS의
함량이 매우 소량이어서 공단량체의 상전동에는 큰
영향은 주지 못하였으나 반면, 4 mol%인 경우에는 pH
4, 7, 10으로 상승함수록 그 가동이 AAmGAc를 산
성 공단량체로 투입했던 경우와 유사하게 나타났다.

Figure 10은 poly(NIPAAm-co-AMPS)의 pH

![Figure 10. Cloud-points of aqueous poly(NIPAAm-
coro-AMPS) solutions with pH: (○) PNIPAAm, (■) AMPS 1 mol%, (▲) AMPS 2 mol%, and (▼) AMPS 4 mol%.

![Figure 11. Schematic illustration of inter- or intramolecular hydrogen bonding of poly(NIPAAm-co-
AMPS).](polymerkorea_vol25_no2_mar001_196)
화에 따른 변화를 정리한 것으로, AMPS 함량이 1, 2 mol%인 경우는 \(T_g \)의 변화의 폭이 매우 소폭인 반면, 4 mol%에서는 매우 높게 \(T_g \)가 나타났음을 볼 수 있었다. 특히 4 mol%로 AAmGAc가 도입된 poly(NIPAAm-co-AAmGAc)가 유사하였으며, Figure 11의 도식적인 그림으로 설명이 가능하였고, 대체적으로 AAmGAc와 유사한 경향과 해석이 가능하였다.

결론

열린웃감성 단량체인 NIPAAm와 산성 공중합체들인 AAC, AAmGAc, 그리고, AMPS를 각각 조성비를 달리하여 자유피지델 중합법으로 합성하였다. pH와 온도면밀도 고분자인 poly(NIPAAm-co-AAC), poly(NIPAAm-co-AAmGAc), 그리고, poly(NIPAAm-co-AMPS)는 온도, pH, 및 조성비에 따라 상전이 온도를 측정하고 수용액상에서 PNIPAAm의 상전이 온도에 영향을 미치는 산성 공중합체와 NIPAAm의 상호작용에 의한 구조적 변화를 조사한 결과, 공중합체내에 산성 공중합체의 물리가 증가함수각 각 산성 공중합체의 pKa보다 pH가 낮을 때는 \(T_g \)가 감소한 반면, \(T_g \)가 높을 때는 \(T_g \)가 증가하였다. 또한, AAmGAc와 AMPS가 도입된 공중합체의 경우, 경기성 분위기 하에서, AAC의 도입되었을 때는 판정할 수 없었던 열에 의한 키플레이션 이 산성 공중합체 자체 내에서 발생하여 고분자 수용액의 \(T_g \)를 다시 낮추는 결과를 가져왔다.

감사의 글: 본 연구는 한국과학재단의 특성기초 연구 (과제번호 : 96-0300-12-01-3) 연구비 및 일부 한국대학과 공학기술연구소 연구비지원에 의한 것으로 이에 감사드립니다.

참고 문헌